Skip to main content
Log in

Differences in Wear Tongue Development: Thermal Degrade Effect on the Tribological Behavior of FKM O-Ring Seals

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Due to thermal degradation, the tribological performance of fluororubber (FKM) at high temperature is not satisfactory, despite its excellent temperature resistance. In this paper, the friction and wear process of FKM O-rings were traced by the tribo-test, which compares the wear behaviors at different stages of the wear process. Results showed that under the influence of thermal degradation of FKM, the wear rate and friction coefficient decrease, while the friction instability increases. This phenomenon is caused by the deterioration of the mechanical properties affects the development of the typical wear pattern of FKM in unsteady state (running-in stage). The wear debris is more likely to adhere to the surface of the wear scar, which causes the friction form to change from two-body abrasion to three-body abrasion. Findings from this study can enhance understanding of tribology behaviors of FKM O-ring seals under the high temperature condition and can help develop higher-performance alternatives.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article.

References

  1. Sui, P.C., Anderle, S.: Optimization of contact pressure profile for performance improvement of a rotary elastomeric seal operating in abrasive drilling environment. Wear 271, 2466–2470 (2011). https://doi.org/10.1016/j.wear.2011.02.021

    Article  CAS  Google Scholar 

  2. Orazzini, S., Kasirin, R., Ferrari, G., Bertini, A., Bizzocchi, I., Ford, R., Li, Q., Zhang, M.: New HT/HP technology for geothermal application significantly increases on-bottom drilling hours. SPE/IADC Drill. Conf. Proc. 1, 70–89 (2012). https://doi.org/10.2118/150030-ms

    Article  Google Scholar 

  3. Qin, K., Zhou, Q., Zhang, K., Feng, Y., Zhang, T., Zheng, G.: Tribology international non-uniform abrasive particle size e ff ects on friction characteristics of FKM O-ring seals under three-body abrasion. Tribiol. Int. 136, 216–223 (2019). https://doi.org/10.1016/j.triboint.2019.03.051

    Article  Google Scholar 

  4. Dong, C.L., Yuan, C.Q., Bai, X.Q., Yan, X.P., Peng, Z.: Tribological properties of aged nitrile butadiene rubber under dry sliding conditions $. Wear 322–323, 226–237 (2015). https://doi.org/10.1016/j.wear.2014.11.010

    Article  CAS  Google Scholar 

  5. Wang, Q., Pei, J., Li, G., He, X., Niu, Y., Li, G.: Accelerated aging behaviors and mechanism of fluoroelastomer in lubricating oil medium. Chinese J. Polym. Sci. 38, 853–866 (2020)

    Article  CAS  Google Scholar 

  6. Sugama, T.: Surface analyses of fluoroelastomer bearings exposed to geothermal environments. Mater. Lett. 50, 66–72 (2001)

    Article  CAS  Google Scholar 

  7. Akhlaghi, S., Pourrahimi, A.M., Sjöstedt, C., Bellander, M., Hedenqvist, M.S., Gedde, U.W.: Degradation of fluoroelastomers in rapeseed biodiesel at different oxygen concentrations. Polym. Degrad. Stab. 136, 10–19 (2017). https://doi.org/10.1016/j.polymdegradstab.2016.12.006

    Article  CAS  Google Scholar 

  8. Balasooriya, W., Schrittesser, B., Pinter, G., Schwarz, T.: Induced material degradation of elastomers in harsh environments. Polym. Test. 69, 107–115 (2018). https://doi.org/10.1016/j.polymertesting.2018.05.016

    Article  CAS  Google Scholar 

  9. Wang, Y., Bai, Y.: The functionalization of fluoroelastomers: approaches, properties, and applications. RSC Adv 6, 53730–53748 (2016)

    Article  CAS  Google Scholar 

  10. Persson, B.: Role of frictional heating in rubber friction. Tribol. Lett. 56, 77–92 (2014)

    Article  Google Scholar 

  11. Hakami, F., Pramanik, A., Basak, A.K., Ridgway, N.: Elastomers’ wear: comparison of theory with experiment. Tribol. Int. 135, 46–54 (2019)

    Article  Google Scholar 

  12. Harsha, A.P., Tewari, U.S., Venkatraman, B.: Three-body abrasive wear behaviour of polyaryletherketone composites. Wear 254, 680–692 (2003)

    Article  CAS  Google Scholar 

  13. Budinski, K.G.: Resistance to particle abrasion of selected plastics. Wear 203, 302–309 (1997)

    Article  Google Scholar 

  14. Yoshihide, F., Hirotaka, Y.: Mechanism of rubber abrasion part 3: how is friction linked to fracture in rubber abrasion? Wear 188, 19–26 (1995)

    Article  Google Scholar 

  15. Lancaster, J.K.: Relationships between the wear of polymers and their mechanical properties. In: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. SAGE Publications Sage, London, 98–106 1968

  16. Hu, X.Y., Shuai, C.H., Yang, X.: Effects of polytetrafluoroethylene micro powder on friction and wear properties of fluororubber. Polym. Mater. Sci. Eng. 35, 69–73 (2019)

    CAS  Google Scholar 

  17. Liang, H., Fukahori, Y., Thomas, A.G., Busfield, J.J.C.: The steady state abrasion of rubber: why are the weakest rubber compounds so good in abrasion? Wear 268, 756–762 (2010). https://doi.org/10.1016/j.wear.2009.11.015

    Article  CAS  Google Scholar 

  18. Schapery, R.A.: A model for the prediction of rubber friction with Schallamach waves. Tribol. Int. 143, 106018 (2020). https://doi.org/10.1016/j.triboint.2019.106018

    Article  Google Scholar 

  19. Denardin, E.L.G., Janissek, P.R., Samios, D.: Time-temperature dependence of the thermo-oxidative aging of polychloroprene rubber—the time-temperature-transformation (TTT) superposition method and the lifetime prediction. Thermochim. Acta. 395, 159–167 (2003)

    Article  CAS  Google Scholar 

  20. Zhang, S.W.: Studies on rubber wear. Proc. Inst. Mech. Eng. 212, 227–234 (1998). https://doi.org/10.1243/1350650981542047

    Article  Google Scholar 

  21. Zhang, S.W.: Investigation of abrasion of nitrile rubber, (1984)

  22. Schallamach, A.: How does rubber slide? Wear 17, 301–312 (1971)

    Article  Google Scholar 

  23. Fukahori, Y., Gabriel, P., Busfield, J.J.C.: How does rubber truly slide between Schallamach waves and stick-slip motion? Wear 269, 854–866 (2010). https://doi.org/10.1016/j.wear.2010.08.016

    Article  CAS  Google Scholar 

  24. Molnar, W., Nevosad, A., Rojacz, H., Adam, K., Henze, H.J., Ripoll, M.R., Badisch, E.: Two and three-body abrasion resistance of rubbers at elevated temperatures. Wear 414–415, 174–181 (2018). https://doi.org/10.1016/j.wear.2018.08.015

    Article  CAS  Google Scholar 

  25. Ageing, A.H., Results, T.: Ageing of rubber. Technology. 44, (1939)

  26. Miyahara, K., Bae, D.S., Kimura, T., et al.: Phase instability and toughness change during high temperature exposure of various steels for the first wall structural materials of a fusion reactor[J]. J. Nucl. Mater. 226(1–2), 92–103 (1995). https://doi.org/10.1016/0022-3115(95)00118-2

    Article  CAS  Google Scholar 

  27. Riffard, F., Buscail, H., Caudron, E., Cueff, R., Issartel, C., Perrier, S.: Yttrium implantation effect on 304L stainless steel high temperature oxidation at 1000 °C. J. Mater. Sci. 37, 3925–3933 (2002). https://doi.org/10.1023/A:1019667825476

    Article  CAS  Google Scholar 

  28. Guo, Y., Zhang, Z., Wang, D., Zhang, S.: Fretting wear behavior of rubber against concrete for submarine pipeline laying clamping. Wear 432, 102925 (2019). https://doi.org/10.1016/j.wear.2019.05.040

    Article  CAS  Google Scholar 

  29. Lainé, E., Grandidier, J.C., Benoit, G., Omnès, B., Destaing, F.: Effects of sorption and desorption of CO2 on the thermomechanical experimental behavior of HNBR and FKM O-rings—influence of nanofiller- reinforced rubber. Polym. Test. 75, 298–311 (2019). https://doi.org/10.1016/j.polymertesting.2019.02.010

    Article  CAS  Google Scholar 

  30. Sugama, T., Pyatina, T., Redline, E., Mcelhanon, J., Blankenship, D.: Degradation of different elastomeric polymers in simulated geothermal environments at 300 °C. Polym. Degrad. Stab. 120, 328–339 (2015). https://doi.org/10.1016/j.polymdegradstab.2015.07.010

    Article  CAS  Google Scholar 

  31. Lv, X.R., Wang, H.M., Wang, S.J.: Effect of swelling nitrile rubber in cyclohexane on its ageing, friction and wear characteristics. Wear 329, 414–421 (2015). https://doi.org/10.1016/j.wear.2015.03.016

    Article  CAS  Google Scholar 

  32. Kader, M.A., Bhowmick, A.K.: Thermal ageing, degradation and swelling of acrylate rubber, fluororubber and their blends containing polyfunctional acrylates. Polym. degrad. Stab. 79, 283–295 (2003)

    Article  CAS  Google Scholar 

  33. Roche, N., Heuillet, P., Janin, C., Jacquot, P.: Surface & coatings technology mechanical and tribological behavior of HNBR modified by ion implantation, influence of aging. Surf. Coat. Technol. 209, 58–63 (2012). https://doi.org/10.1016/j.surfcoat.2012.08.029

    Article  CAS  Google Scholar 

  34. Xia, L., Wang, M., Wu, H., Guo, S.: Effects of cure system and filler on chemical aging behavior of fluoroelastomer in simulated proton exchange membrane fuel cell environment. Int. J. Hydrogen Energy. 41, 2887–2895 (2016)

    Article  CAS  Google Scholar 

  35. Mofidi, M., Kassfeldt, E., Prakash, B.: Tribological behaviour of an elastomer aged in different oils. Tribol. Int. 41, 860–866 (2008). https://doi.org/10.1016/j.triboint.2007.11.013

    Article  CAS  Google Scholar 

  36. Krick, B.A., Vail, J.R., Persson, B.N.J., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 45, 185–194 (2012). https://doi.org/10.1007/s11249-011-9870-y

    Article  Google Scholar 

  37. Chen, G.X., Zhou, Z.R.: A self-excited vibration model based on special elastic vibration modes of friction systems and time delays between the normal and friction forces: a new mechanism for squealing noise. Wear 262, 1123–1139 (2007). https://doi.org/10.1016/j.wear.2006.11.014

    Article  CAS  Google Scholar 

  38. Sun, D., Li, G., Wei, H., Liao, H.: tribology international experimental study on the chaotic attractor evolvement of the friction vibration in a running-in process. Tribiol. Int. 88, 290–297 (2015). https://doi.org/10.1016/j.triboint.2015.03.033

    Article  Google Scholar 

  39. Zakeri, M., Azimirad, V., Nia, A.S., Kharrati, H.: Proceedings of the institution of Mechanical Engineers. J. Syst. Control Eng. (2016). https://doi.org/10.1177/0959651816634479

    Article  Google Scholar 

  40. Zhang, T., Huang, H., Li, W., Chang, X., Cao, J., Hua, L.: Vulcanization modeling and mechanism for improved tribological performance of styrene-butadiene rubber at the atomic scale. Tribol. Lett. 68, 1–11 (2020). https://doi.org/10.1007/s11249-020-01321-w

    Article  CAS  Google Scholar 

  41. Mokhtari, M., Schipper, D.J., Tolpekina, T.V.: On the friction of carbon black- and silica-reinforced BR and S-SBR elastomers. Tribol. Lett. 54, 297–308 (2014). https://doi.org/10.1007/s11249-014-0334-z

    Article  CAS  Google Scholar 

  42. Zhu, Z., Cheng, Q., Jiang, C., Zhang, J., Jiang, H.: Scratch behavior of the aged hydrogenated nitrile butadiene rubber. Wear 352–353, 155–159 (2016). https://doi.org/10.1016/j.wear.2016.02.010

    Article  CAS  Google Scholar 

  43. Roche, N., Heuillet, P., Janin, C., Jacquot, P.: Mechanical and tribological behavior of HNBR modified by ion implantation, influence of aging. Surf. Coatings Technol. 209, 58–63 (2012). https://doi.org/10.1016/j.surfcoat.2012.08.029

    Article  CAS  Google Scholar 

  44. Jiang, B., Jia, X., Wang, Z., Wang, T., Guo, F., Wang, Y.: Influence of thermal aging in oil on the friction and wear properties of nitrile butadiene rubber. Tribol. Lett. 67, 1–10 (2019). https://doi.org/10.1007/s11249-019-1201-8

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 42072340 and No. 41672365), and the National Key R&D Program of China (2018YFC0603405).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qin Zhou or Kai Zhang.

Ethics declarations

Conflict of interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Consent for Publication

As corresponding author, I Qin Zhou, hereby confirm on behalf of all authors that: the authors have obtained the necessary authority for publication. The paper has not been published previously, that it is not under consideration for publication elsewhere and that if accepted it will not be published elsewhere in the same form, in English or in any other language, without the written consent of the publisher. The paper does not contain material which has been published previously, by the current authors or by others, of which the source is not explicitly cited in the paper. Upon acceptance of an article by the journal, the author(s) will be asked to transfer the copyright of the article to the publisher. This transfer will ensure the widest possible dissemination of information.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, K., Zhou, Q., Zhang, K. et al. Differences in Wear Tongue Development: Thermal Degrade Effect on the Tribological Behavior of FKM O-Ring Seals. Tribol Lett 69, 125 (2021). https://doi.org/10.1007/s11249-021-01489-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01489-9

Keywords

Navigation