Skip to main content
Log in

Experiment and Simulation of Erosion Behavior and Deformation Characteristics in Al6061-T6 Beam Due to Rhomboid Particle Impacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The erosion mechanism and deformation characteristics of rhomboid-shaped particle impacting metal beam are studied. Physical experiments of rhomboid-shaped particle impacting cantilever beam and fixed–fixed beam are carried out, respectively. The erosion behavior of particles and deformation characteristics of beam are captured by high-speed imaging system. Meanwhile, the numerical models of rhomboid-shaped particle impacting beam, based on FEM-SPH coupled method, are established. The effects of the geometrical parameters of the beam, the incident conditions of particle and the impact position on the elastic–plastic deformation of beam and rebound behavior of particles are further analyzed. The results show: (1) The width of cantilever beam affects its maximum deflection and deformation; (2) The threshold value of breakdown velocity is controlled by the substrate size; (3) The increment of internal energy is basically independent of the impact position; (4) The deflection value at impact position of beam is maximized under the critical impact condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Shankar, M.R., Chandrasekar, S., Compton, W.D., et al.: Characteristics of aluminum 6061–T6 deformed to large plastic strains by machining. Mater. Eng. A 410, 364–368 (2005)

    Article  Google Scholar 

  2. Mahabunphachai, S., Koc, M.: Investigations on forming of aluminum 5052 and 6061 sheet alloys at warm temperatures. Mater. Des. 31(5), 2422–2434 (2010)

    Article  CAS  Google Scholar 

  3. Djavanroodi, F., Derogar, A.: Experimental and numerical evaluation of forming limit diagram for Ti6Al4V titanium and Al6061-T6 aluminum alloys sheets. Mater. Des. 31(10), 4866–4875 (2010)

    Article  CAS  Google Scholar 

  4. Salimianrizi, A., Foroozmehr, E., Badrossamay, M., et al.: Effect of Laser Shock Peening on surface properties and residual stress of Al6061-T6. Opt. Lasers Eng. 77, 112–117 (2016)

    Article  Google Scholar 

  5. Ghahremaninezhad, A., Ravi-Chandar, K.: Ductile failure behavior of polycrystalline Al 6061–T6. Int. J. Fract. 174(2), 177–202 (2012)

    Article  CAS  Google Scholar 

  6. Manes, A., Pagani, M., Saponara, M., et al.: Metallographic characterisation of Al6061-T6 aluminium plates subjected to ballistic impact. Mater. Eng. A 608, 207–220 (2014)

    Article  CAS  Google Scholar 

  7. Takaffoli, M., Papini, M.: Numerical simulation of solid particle impacts on Al6061-T6 part I: three-dimensional representation of angular particles. Wear 292–293, 100–110 (2012)

    Article  CAS  Google Scholar 

  8. Takaffoli, M., Papini, M.: Numerical simulation of solid particle impacts on Al6061-T6 Part II: Materials removal mechanisms for impact of multiple angular particles. Wear 296(1–2), 648–655 (2012)

    Article  CAS  Google Scholar 

  9. Takaffoli, M., Papini, M.: Material deformation and removal due to single particle impacts on ductile materials using smoothed particle hydrodynamics. Wear 274–275, 50–59 (2012)

    Article  CAS  Google Scholar 

  10. Hadavi, V., Papini, M.: Numerical modeling of particle embedment during solid particle erosion of ductile materials. Wear 342, 310–321 (2015)

    Article  Google Scholar 

  11. Salman, A.D., Biggs, C.A., Fu, J., Angyal, I., Szabo, M., Hounslow, M.J.: An experimental investigation of particle fragmentation using single particle impact studies. Powder Technol. 128(1), 36–46 (2002)

    Article  CAS  Google Scholar 

  12. Macdonald, B.J.: A computational and experimental analysis of high energy impact to sheet metal aircraft structures. J. Mater. Process. Technol. 124(1–2), 92–98 (2002)

    Article  Google Scholar 

  13. Mccarthy, M.A., Xiao, J.R., Mccarthy, C.T., et al.: Modelling bird impacts on an aircraft wing - part 2: modelling the impact with an SPH bird model. Int. J. Crashworthiness 10(1), 51–59 (2005)

    Article  Google Scholar 

  14. Chen, W., Hudspeth, M., Guo, Z., et al.: Multi-scale experiments on soft body armors under projectile normal impact. Int. J. Impact Eng. 108, 63–72 (2017)

    Article  Google Scholar 

  15. Silnikov, M.V., Guk, I.V., Nechunaev, A.F., et al.: Numerical simulation of hypervelocity impact problem for spacecraft shielding elements. Acta Astronaut. 150, 56–62 (2017)

    Article  Google Scholar 

  16. Gart, S., Mates, J.E., Megaridis, C.M., et al.: Droplet impacting a cantilever: a leaf-raindrop system. Phys. Rev. Appl. 3(4), 44019 (2015)

    Article  Google Scholar 

  17. Li Rong, W., Guang Jun, Y., Yang, Y., et al.: Study on vibration characteristics of single granular rock direct impact metal plate. Coal Technol. 36(11), 213–216 (2017)

    Google Scholar 

  18. Wang, J.G.: Principle and Technology of Gas Gun. National Defense Industry Press, Beijing (2001)

    Google Scholar 

  19. Takaffoli, M., Papini, M.: Finite element analysis of single impacts of angular particles on ductile targets. Wear 267(1), 144–151 (2009)

    Article  CAS  Google Scholar 

  20. Liu, G.R., Liu, M.B.: Smoothed Particle Hydrodynamics: A Mesh-free Particle Method. World Scientific, Singapore (2004)

    Google Scholar 

  21. Dong, X.W., Liu, G.R., Li, Z., et al.: A smoothed particle hydrodynamics (SPH) model for simulating surface erosion by impacts of foreign particles. Tribol. Int. 95, 267–278 (2016)

    Article  Google Scholar 

  22. Dong, X., Li, Z., Feng, L., et al.: Modeling, simulation, and analysis of the impact(s) of single angular-type particles on ductile surfaces using smoothed particle hydrodynamics. Powder Technol. 318, 363–382 (2017)

    Article  CAS  Google Scholar 

  23. Hu, D., Han, X., Xiao, Y., et al.: Research developments of smoothed particle hydrodynamics method and its coupling with finite element method. Chin. J. Theor. Appl. Mech. 45(5), 639–652 (2013)

    Google Scholar 

  24. Johnson, G.R.: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact simulations. Nucl. Eng. Des. 150(2–3), 265–274 (1994)

    Article  CAS  Google Scholar 

  25. Zhang, Z., Qiang, H., Gao, W.: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation. Eng. Struct. 33(1), 255–264 (2011)

    Article  Google Scholar 

  26. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. Proceedings of the 7th International Symposium on Ballistics. 1983, 21, 541–547.

  27. Johnson, G.R., Cook, W.H.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressure. Eng. Fract. Mech. 21(1), 31–48 (1985)

    Article  Google Scholar 

  28. Randles, P.W., Libersky, L.D.: Smoothed particle hydrodynamics: some recent improvement and applications. Comput. Methods Appl. Mech. Eng. 139(1–4), 375–408 (1996)

    Article  Google Scholar 

  29. Kim, H.K., Park, E.T., Song, W.J., et al.: Experimental and numerical investigation of the high-velocity impact resistance of fiber metal laminates and Al 6061–T6 by using electromagnetic launcher. J. Mech. Sci. Technol. 33(3), 1219–1229 (2019)

    Article  Google Scholar 

  30. Azimian, M., Schmitt, P., Bart, H.J.: Numerical investigation of single and multi-impacts of angular particles on ductile surfaces. Wear 342–343, 252–261 (2015)

    Article  Google Scholar 

  31. Du, M., Li, Z., Dong, X., et al.: Single pyramid-shaped particle impact on metallic surfaces: a 3D numerical simulation and experiment. Tribol. Lett. 67(4), 2–15 (2019)

    Article  Google Scholar 

  32. Du, M., Li, Z., Dong, X., et al.: Experiment and simulation study of erosion mechanism in float glass due to rhomboid particle impacts. Int. J. Impact Eng. 139, 103513 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank ‘National Major Science and Technology Projects (Grant No. 2016ZX05011004-002), Natural Science Foundation of Shandong Province (CN) (Grant No. ZR2018MA028) and Postgraduate Innovation Engineering (Grant No. YCX2020065)’ for the financial support.

Author information

Authors and Affiliations

Authors

Contributions

MD: Data curation, validation, and complete the first draft of the paper. ZL: Supervision. XD: Put forward the idea of analysis method. CF: Visualization, Investigation. JC: Simulation. YZ: Experiment.

Corresponding author

Correspondence to Xiangwei Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, M., Li, Z., Dong, X. et al. Experiment and Simulation of Erosion Behavior and Deformation Characteristics in Al6061-T6 Beam Due to Rhomboid Particle Impacts. Tribol Lett 69, 85 (2021). https://doi.org/10.1007/s11249-021-01465-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01465-3

Keywords

Navigation