Skip to main content
Log in

Stress Relaxation of Comb Polymer Melts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Branched polymers stress relaxation is at the center to their function as viscosity modifiers, though the fundamentals that underlie the correlation between the polymer topology and their impact on viscosity remains an open question. Here, the stress relaxation of short, branched polyethylene comb polymer melts is studied by molecular dynamics simulations. A coarse-grained model where four methylene groups constitute one bead is used, and the results are transposed to the atomistic level. For arms of length comparable to entanglement length ne of the linear polymer, we show that while increasing the number of branches with the same arm length decreases the plateau modulus, the terminal diffusive time does not change significantly. Increasing the arm length decreases the plateau modulus and increases the terminal time. As arms shorter than ne relax by the entanglement time, both the chain mobility and stress relaxation can be described by reptation of the backbone with an increased tube diameter and an increased friction coefficient; or in other words, the branches act as a solvent.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. McLeish, T.C., Milner, S.T.: Entangled dynamics and melt flow of branched polymers. In: Roovers, J. (ed.) Branched Polymers II Advances in Polymer Science, pp. 195–256. Springer, Berlin (1999)

    Google Scholar 

  2. Snijkers, F., Pasquino, R., Olmsted, P., Vlassopoulos, D.: Perspectives on the viscoelasticity and flow behavior of entangled linear and branched polymers. J. Phys. Condens. Matter 27, 473002 (2015)

    Article  CAS  Google Scholar 

  3. Matyjaszewski, K.: Architecturally complex polymers with controlled heterogeneity. Science 333, 1104–1105 (2011)

    Article  CAS  Google Scholar 

  4. Fujimoto, T., Narukawa, H., Nagasawa, M.: Viscoelastic properties of comb-shaped polystyrenes. Macromolecules 3, 57–64 (1970)

    Article  CAS  Google Scholar 

  5. Roovers, J., Graessley, W.: Melt rheology of some model comb polystyrenes. Macromolecules 14, 766–773 (1981)

    Article  CAS  Google Scholar 

  6. Daniels, D., McLeish, T., Crosby, B., Young, R., Fernyhough, C.: Molecular rheology of comb polymer melts. 1. Linear viscoelastic response. Macromolecules 34, 7025–7033 (2001)

    Article  CAS  Google Scholar 

  7. Lohse, D., Milner, S., Fetters, L., Xenidou, M., Hadjichristidis, N., Mendelson, R., Garcia-Franco, C., Lyon, M.: Well-defined, model long chain branched polyethylene. 2. Melt rheological behavior. Macromolecules 35, 3066–3075 (2002)

    Article  CAS  Google Scholar 

  8. Kapnistos, M., Vlassopoulos, D., Roovers, J., Leal, L.: Linear rheology of architecturally complex macromolecules: comb polymers with linear backbones. Macromolecules 38, 7852–7862 (2005)

    Article  CAS  Google Scholar 

  9. Stange, J., Uhl, C., Münstedt, H.: Rheological behavior of blends from a linear and a long-chain branched polypropylene. J. Rheo. 49, 1059–1079 (2005)

    Article  CAS  Google Scholar 

  10. Stadler, F.J., Gabriel, C., Münstedt, H.: Influence of short-chain branching of polyethylenes on the temperature dependence of rheological properties in shear. Macromol. Chem. Phys. 208, 2449–2454 (2007)

    Article  CAS  Google Scholar 

  11. Inkson, N., Graham, R., McLeish, T., Groves, D., Fernyhough, C.: Viscoelasticity of monodisperse comb polymer melts. Macromolecules 39, 4217–4227 (2006)

    Article  CAS  Google Scholar 

  12. Wagner, M.H., Rolón-Garrido, V.H., Hyun, K., Wilhelm, M.: Analysis of medium amplitude oscillatory shear data of entangled linear and model comb polymers. J. Rheol. 55, 495–516 (2011)

    Article  CAS  Google Scholar 

  13. Kempf, M., Ahirwal, D., Cziep, M., Wilhelm, M.: Synthesis and linear and nonlinear melt rheology of well-defined comb architectures of PS and PpMS with a low and controlled degree of long-chain branching. Macromolecules 46, 4978–4994 (2013)

    Article  CAS  Google Scholar 

  14. Abbasi, M., Faust, L., Riazi, K., Wilhelm, M.: Linear and extensional rheology of model branched polystyrenes: from loosely grafted combs to bottlebrushes. Macromolecules 50, 5964–5977 (2017)

    Article  CAS  Google Scholar 

  15. Haugan, I.N., Maher, M.J., Chang, A.B., Lin, T.-P., Grubbs, R.H., Hillmyer, M.A., Bates, F.S.: Consequences of grafting density on the linear viscoelastic behavior of graft polymers. ACS Macro Lett. 7, 525–530 (2018)

    Article  CAS  Google Scholar 

  16. de Gennes, P.-G.: Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971)

    Article  Google Scholar 

  17. Doi, M., Edwards, S.F.: The Theory of Polymer Dynamics. Oxford University, Oxford (1986)

    Google Scholar 

  18. Yurasova, T., McLeish, T., Semenov, A.: Stress relaxation in entangled comb polymer melts. Macromolecules 27, 7205–7211 (1994)

    Article  CAS  Google Scholar 

  19. Bacová, P., Lentzakis, H., Read, D.J., Moreno, A.J., Vlassopoulos, D., Das, C.: Branch-point motion in architecturally complex polymers: estimation of hopping parameters from computer simulations and experiments. Macromolecules 47, 3362–3377 (2014)

    Article  Google Scholar 

  20. Bačová, P., Moreno, A.J.: Real-space analysis of branch point motion in architecturally complex polymers. Macromolecules 47, 6955–6963 (2014)

    Article  Google Scholar 

  21. Zhou, Q., Larson, R.G.: Direct molecular dynamics simulation of branch point motion in asymmetric star polymer melts. Macromolecules 40, 3443–3449 (2007)

    Article  CAS  Google Scholar 

  22. Wijesinghe, S., Perahia, D., Grest, G.S.: Polymer topology effects on dynamics of comb polymer melts. Macromolecules 51, 7621–7628 (2018)

    Article  CAS  Google Scholar 

  23. Salerno, K.M., Agrawal, A., Peters, B.L., Perahia, D., Grest, G.S.: Dynamics in entangled polyethylene melts. Eur. Phys. J. Special Top. 225, 1707–1722 (2016)

    Article  CAS  Google Scholar 

  24. Grest, G.S., Michael Salerno, K., Peters, B.L., Ge, T., Perahia, D.: Resolving properties of entangled polymers melts through atomistic derived coarse-grained models. In: Andreoni, W., Yip, S. (eds.) Handbook of Materials Modeling: Methods: Theory and Modeling, pp. 1397–1410. Springer, Cham (2020)

    Chapter  Google Scholar 

  25. Salerno, K.M., Agrawal, A., Perahia, D., Grest, G.S.: Resolving dynamic properties of polymers through coarse-grained computational studies. Phys. Rev. Lett. 116, 058302 (2016)

    Article  Google Scholar 

  26. Peters, B.L., Salerno, K.M., Agrawal, A., Perahia, D., Grest, G.S.: Coarse grained modeling of polyethylene melts: effect on dynamics. J. Chem. Theory Comput. 13, 2890–2896 (2017)

    Article  CAS  Google Scholar 

  27. Jorgensen, W.L., Madura, J.D., Swenson, C.J.: Optimized intermolecular potential functions for liquid hydrocarbons. J. Am. Chem. Soc. 106, 6638–6646 (1984)

    Article  CAS  Google Scholar 

  28. Jorgensen, W.L., Maxwell, D.S., TiradoRives, J.: Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 118, 11225–11236 (1996)

    Article  CAS  Google Scholar 

  29. Siu, S.W., Pluhackova, K., Böckmann, R.A.: Optimization of the OPLS-AA force field for long hydrocarbons. J. Chem. Theory Comput. 8, 1459–1470 (2012)

    Article  CAS  Google Scholar 

  30. Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys. Rev. B 17, 1302–1322 (1978)

    Article  CAS  Google Scholar 

  31. Grest, G.S., Kremer, K.: Molecular dynamics simulations for polymers in the presence of a heat bath. Phys. Rev A 33, 3628–3631 (1986)

    Article  CAS  Google Scholar 

  32. Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  33. Fetters, L., Lohse, D., Richter, D., Witten, T., Zirkel, A.: Connection between polymer molecular weight, density, chain dimensions, and melt viscoelastic properties. Macromolecules 27, 4639–4647 (1994)

    Article  CAS  Google Scholar 

  34. Fetters, L.J., Lohse, D.J., Milner, S.T., Graessley, W.W.: Packing length influence in linear polymer melts on the entanglement, critical, and reptation molecular weights. Macromolecules 32, 6847–6851 (1999)

    Article  CAS  Google Scholar 

  35. Vega, J.F., Rastogi, S., Peters, G.W.M., Meijer, H.E.H.: Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt. J. Rheol. 48, 663–678 (2004)

    Article  CAS  Google Scholar 

  36. Hsu, H.-P., Kremer, K.: Static and dynamic properties of large polymer melts in equilibrium. J. Chem. Phys. 144, 154907 (2016)

    Article  Google Scholar 

  37. Peters, B.L., Salerno, K.M., Ge, T., Perahia, D., Grest, G.S.: Viscoelastic response of dispersed entangled polymer melts. Macromolecules 53, 8400–8405 (2020)

    Article  CAS  Google Scholar 

  38. Treloar, L.R.G.: The Physics of Rubber Elasticity. Oxford University Press, Oxford (1975)

    Google Scholar 

  39. Kremer, K., Grest, G.S.: Dynamics of entangled linear polymer melts: a molecular-dynamics simulation. J. Chem. Phys. 92, 5057–5086 (1990)

    Article  CAS  Google Scholar 

  40. Likhtman, A.E., McLeish, T.C.: Quantitative theory for linear dynamics of linear entangled polymers. Macromolecules 35, 6332–6343 (2002)

    Article  CAS  Google Scholar 

  41. Marrucci, G.: Relaxation by reptation and tube enlargement: a model for polydisperse polymers. J Polym. Sci. B 23, 159–177 (1985)

    CAS  Google Scholar 

  42. Hou, J.-X., Svaneborg, C., Everaers, R., Grest, G.S.: Stress relaxation in entangled polymer melts. Phys. Rev. Lett. 105, 068301 (2010)

    Article  Google Scholar 

Download references

Acknowledgement

We dedicate this paper to the memory of Mark O. Robbins, graduate advisor to two of us (TG and KMS), friend and colleague to all. D. Perahia kindly acknowledged NSF DMR 1905407 for partial support. T. Ge acknowledges start-up funds from the University of South Carolina. This research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility operated under Contract No. DE-AC02-05CH11231. This work was performed, in part, at the Center for Integrated Nanotechnologies, an Office of Science User Facility operated for the U.S. Department of Energy (DOE) Office of Science. Sandia National Laboratories is a multimission laboratory managed and operated by the National Technology and Engineering Solutions of Sandia, LC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract no. DE-NA-0003525. The views expressed in the article do not necessarily represent the views of the U.S. DOE or the United States Government.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dvora Perahia or Gary S. Grest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wijesinghe, S., Perahia, D., Ge, T. et al. Stress Relaxation of Comb Polymer Melts. Tribol Lett 69, 59 (2021). https://doi.org/10.1007/s11249-021-01432-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01432-y

Keywords

Navigation