Skip to main content
Log in

Molecular Dynamics Examination of Sliding History-Dependent Adhesion in Si–Si Nanocontacts: Connecting Friction, Wear, Bond Formation, and Interfacial Adhesion

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

We simulate the contact between nanoscale hydrogen-terminated, single-crystal silicon asperities and surfaces using reactive molecular dynamics (MD) simulations. The results are consistent with recent experimental observations of a more than order-of-magnitude sliding-induced increase in interfacial adhesion for silicon-silicon nanocontact experiments obtained using in situ transmission electron microscopy (TEM). In particular, the MD simulations support the hypothesis that the increased adhesion results from sliding-induced removal of passivating species, in this case hydrogen, followed by rapid formation of Si–Si covalent bonds across the interface, with little plastic deformation of the asperities. The MD results concur with the additional hypothesis that subsequent readsorption of passivating species explains the experimental observation that adhesion reverts to low values upon subsequent contact. However, the simulations further reveal that the sliding-induced adhesion increase is only observed when there are a sufficient number of preexisting surface defects in the form of incomplete hydrogen coverage. Increased hydrogen coverage suppresses interfacial bonding, within the time span of the simulations. Furthermore, the relative alignment of the surface crystal axes plays a strong role in affecting the probability of bond formation during sliding and the subsequent adhesive pull-off force. Also, the hydrogen coverage and sliding distance significantly impact friction at low to moderate hydrogen coverages. Atomic-scale wear does occur during the sliding process primarily through Si–Si bond formation across the interface followed by pull-out of Si atoms from the tip. At low hydrogen coverages, wear is far more severe, Archard’s wear law is obeyed, and significant morphological changes of the asperity occur. The bond formation process is highly stochastic, but shows a general trend of greater numbers of bonds with greater sliding distances. Tips wear by losing large clusters of material, then smaller clusters and individual atoms, and eventually enter into a wearless regime as hydrogen termination increases.

Graphical Abstract

A hydrogen-terminated Si tip (green and blue) in sliding contact with a hydrogen-terminated Si substrate (yellow and red). The sliding direction is indicated by the black arrow. At this level of hydrogen termination, wear is initiated by the removal of hydrogen atoms from the tip (blue atoms at left of figure). Continued sliding causes the formation of interfacial Si-Si bonds followed by the transfer of Si and H from the tip to the surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang, K., Bilek, S.L.: Invited review paper: fault creep caused by subduction of rough seafloor relief. Tectonophysics 610, 1–24 (2014)

    Article  Google Scholar 

  2. Popov, V.L., Grzemba, B., Starcevic, J., Popov, M.: Rate and state dependent friction laws and the prediction of earthquakes: what can we learn from laboratory models? Tectonophysics 532, 291–300 (2012)

    Article  Google Scholar 

  3. Kawamura, H., Hatano, T., Kato, N., Biswas, S., Chakrabarti, B.K.: Statistical physics of fracture, friction, and earthquakes. Rev. Modern Phys. 84, 839 (2012)

    Article  Google Scholar 

  4. Salerno, K.M., Robbins, M.O.: Effect of inertia on sheared disordered solids: critical scaling of avalanches in two and three dimensions. Phys. Rev. E 88, 062206 (2013)

    Article  Google Scholar 

  5. Sulaiman, M.H., Raof, N.A., Dahnel, A.N.: Tribology of Composite Materials and Coatings in Manufacturing. Tribol. Appl. Compos. Mater, pp. 283-308. Springer, Place Springer (2021)

  6. Niketh, S., Samuel, G.L.: Surface texturing for tribology enhancement and its application on drill tool for the sustainable machining of titanium alloy. J. Clean. Product. 167, 253–270 (2017)

    Article  CAS  Google Scholar 

  7. Astakhov, V.P.: Tribology of cutting tools. Tribol. Manufact. Technol., pp. 1-66. Springer, Place Springer (2012)

  8. Kim, S., Jiang, Y., Towell, K.L.T., Boutilier, M.S.H., Nayakanti, N., Cao, C., et al.: Soft nanocomposite electroadhesives for digital micro- and nanotransfer printing. Sci. Adv. 5, eaax4790 (2019)

  9. Garcia, R., Knoll, A.W., Riedo, E.: Advanced scanning probe lithography. Nat. Nanotechnol. 9, 577 (2014)

    Article  CAS  Google Scholar 

  10. Howell, S.T., Grushina, A., Holzner, F., Brugger, J.: Thermal scanning probe lithography - a review. Microsys. Nanoeng. 6, 1–24 (2020)

    Article  Google Scholar 

  11. Garno, J.C., Yang, Y., Amro, N.A., Cruchon-Dupeyrat, S., Chen, S., Liu, G.-Y.: Precise positioning of nanoparticles on surfaces using scanning probe lithography. Nano Lett. 3, 389–395 (2003)

    Article  CAS  Google Scholar 

  12. Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    Article  CAS  Google Scholar 

  13. Luan, B.Q., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simuations. Phys. Rev. E 74, 026111–026117 (2006)

    Article  Google Scholar 

  14. Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295 (2001)

    Article  Google Scholar 

  15. Nie, X.B., Chen, S.Y., Robbins, M.O.: A continuum and molecular dynamics hybrid method for micro- and nano-fluid flow. J. Fluid. Mech. 500, 55–64 (2004)

    Article  CAS  Google Scholar 

  16. Nie, X.B., Chen, S.Y., Robbins, M.O.: Hybrid continuum-atomistic simulation of singular corner flow. Phys. Fluids 16, 3579–3591 (2004)

    Article  CAS  Google Scholar 

  17. Jadhao, V., Robbins, M.O.: Probing large viscosities in glass-formers with nonequilibrium simulations. Proc. Natl. Acad. Sci. 114, 7952–7957 (2017)

    Article  CAS  Google Scholar 

  18. Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. USA. 111, 3298–3303 (2014)

    Article  CAS  Google Scholar 

  19. Pastewka, L., Robbins, M.O.: Contact area of rough spheres: Large scale simulations and simple scaling laws. Appl. Phys. Lett. 108, 221601 (2016)

    Article  Google Scholar 

  20. Milne, Z.B., Bernal, R.A., Carpick, R.W.: Sliding history-dependent adhesion of nanoscale silicon contacts revealed by in situ transmission electron microscopy. Langmuir 35, 15628–15638 (2019)

    Article  CAS  Google Scholar 

  21. Bernal, R.A., Chen, P., Schall, J.D., Harrison, J.A., Jeng, Y.-R., Carpick, R.W.: Influence of chemical bonding on the variability of diamond-like carbon nanoscale adhesion. Carbon 128, 267–276 (2018)

    Article  CAS  Google Scholar 

  22. Vahdat, V., Ryan, K.E., Keating, P.L., Jiang, Y., Adiga, S.P., Schall, J.D., et al.: Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory. ACS Nano. 8, 7027–7040 (2014)

    Article  CAS  Google Scholar 

  23. Jacobs, T.D., Ryan, K.E., Keating, P.L., Grierson, D.S., Lefever, J.A., Turner, K.T., et al.: The effect of atomic-scale roughness on the adhesion of nanoscale asperities: A combined simulation and experimental investigation. Tribol. Lett. 50, 81–93 (2013)

    Article  CAS  Google Scholar 

  24. Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013)

    Article  CAS  Google Scholar 

  25. Landman, U., Luedtke, W.D., Burnham, N.A., Colton, R.J.: Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248, 454–461 (1990)

    Article  CAS  Google Scholar 

  26. Poppa, H.: High resolution, high speed ultrahigh vacuum microscopy. J. Vacuum Sci. Technol. A: Vacuum, Surf. Films 22, 1931–1947 (2004)

    Article  CAS  Google Scholar 

  27. Rao, V.V., Gosh, T.B., Chopra, K.L.: Vacuum science and Technology. Allied Publishers, (1998)

  28. Carpick, R.W., Bernal, R.A., Chen, P., Schall, J.D., Harrison, J.A., Jeng, Y.-R.: Influence of chemical bonding on the variability of diamond-like carbon nanoscale adhesion: an in-situ TEM/nanoindentation and molecular dynamics study. Microsc. Microanal. 24, 1822–1823 (2018)

    Article  Google Scholar 

  29. Piotrowski, P.L., Cannara, R.J., Gao, G.T., Urban, J.J., Carpick, R.W., Harrison, J.A.: Atomistic factors governing adhesion between diamond, amorphous carbon and model diamond nanocomposite surfaces. J. Adhes. Sci. Technol. 24, 2471–2498 (2010)

    Article  CAS  Google Scholar 

  30. Van den Oetelaar, R.J.A., Flipse, C.F.J.: Atomic-scale friction on diamond (111) studied by ultra-high vacuum atomic force microscopy. Surf. Sci. 384, L828–L835 (1997)

    Article  Google Scholar 

  31. Ryan, K.E., Keating, P.L., Jacobs, T.D.B., Grierson, D.S., Turner, K.T., Carpick, R.W., Harrison, J.A.: Simulated adhesion between realistic hydrocarbon materials: effects of composition, roughness, and contact point. Langmuir 30, 2028–2037 (2014)

    Article  CAS  Google Scholar 

  32. Jiang, Y., Harrison, J.A., David Schall, J., Ryan, K.E., Carpick, R.W., Turner, K.T.: Correcting for tip geometry effects in molecular simulations of single-asperity contact. pp. 78. Place (2017)

  33. Grierson, D.S., Liu, J.J., Carpick, R.W., Turner, K.T.: Adhesion of nanoscale asperities with power-law profiles. J. Mech. Phys. Solids 61, 597–610 (2013)

    Article  CAS  Google Scholar 

  34. Gao, G.T., Cannara, R.J., Carpick, R.W., Harrison, J.A.: Atomic-scale friction on diamond: a comparison of different sliding directions on (001) and (111) surfaces using MD and AFM. Langmuir 23, 5394–5405 (2007)

    Article  CAS  Google Scholar 

  35. Sheehan, P.E., Lieber, C.M.: Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158–1161 (1996)

    Article  CAS  Google Scholar 

  36. Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B 46, 9700–9708 (1992)

    Article  CAS  Google Scholar 

  37. Harrison, J.A., Gao, G., Schall, J.D., Knippenberg, M.T., Mikulski, P.T.: Friction between solids. Phil. Trans. Roy Soc. A 366, 1469–1495 (2008)

    Article  CAS  Google Scholar 

  38. Schall, J.D., Brenner, D.W.: Molecular dynamics simulations of carbon nanotube rolling and sliding on graphite. Mol. Simul. 25, 73–79 (2000)

    Article  CAS  Google Scholar 

  39. Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vacuum Sci. Technol. A: Vacuum, Surf. Films 31, 030801 (2013)

    Article  Google Scholar 

  40. Falvo, M.R., Steele, J., Buldum, A., Schall, J.D., Taylor Ii, R.M., Lu, J.P., et al. Observation of nanometer-scale rolling motion mediated by commensurate contact. arXiv preprint cond-mat/0004076 (2000).

  41. Soria, F.A., Zhang, W., Paredes-Olivera, P.A., Van Duin, A.C.T., Patrito, E.M.: Si/C/H ReaxFF reactive potential for silicon surfaces grafted with organic molecules. J. Phys. Chem. C 122, 23515–23527 (2018)

    Article  CAS  Google Scholar 

  42. Plimpton, S.: Fast Parallel Algorithms for Short-Range Molecular Dynamics. J Comp Phys 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  43. Allen, M.P., Tildesley, D.J.: Computer simulation in chemical physics. Springer Science & Business Media, (2012)

  44. Polak, E., Ribiere, G.: Note sur la convergence de méthodes de directions conjuguées. Rev Française Informat Recherche Opérationelle 3, 35–43 (1969)

    Google Scholar 

  45. Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  CAS  Google Scholar 

  46. Milne, Z.B., Schall, J.D., Jacobs, T.D.B., Harrison, J.A., Carpick, R.W.: Covalent bonding and atomic-level plasticity increase adhesion in silicon-diamond nanocontacts. ACS Appl. Mater. Interf. 11, 40734–40748 (2019)

    Article  CAS  Google Scholar 

  47. Harrison, J.A., Brenner, D.W., White, C.T., Colton, R.J.: Atomistic mechanisms of adhesion and compression of diamond surfaces. Thin Solid Films 206, 213–219 (1991)

    Article  CAS  Google Scholar 

  48. Schall, J.D., Harrison, J.A.: Reactive bond-order potential for Si-, C-, and H-containing materials. J. Phys. Chem. C 117, 1323–1334 (2013)

    Article  CAS  Google Scholar 

  49. Kittel, C.: Introduction to Solid State Physics. John Wiley & Sons Inc, New York (1971)

    Google Scholar 

  50. Gurvich, L.V., Veits, I.V., Alcock, C.B. Thermodynamics properties of individual substances. Volume 1-Elements O, H/D, T/, F, Cl, Br, I, He, Ne, Ar, Kr, Xe, Rn, S, N, P, and their compounds. Part 1-Methods and computation. Part 2-Tables. New York (1989).

  51. Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    Article  CAS  Google Scholar 

  52. Cheng, S.F., Robbins, M.O.: Defining Contact at the Atomic Scale. Tribol. Lett. 39, 329–348 (2010)

    Article  Google Scholar 

  53. Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on adhesion of particles. J. Colloid Interf. Sci. 53, 314–326 (1975)

    Article  CAS  Google Scholar 

  54. Ljungberg, K., Söderbärg, A., Bäcklund, Y.: Spontaneous bonding of hydrophobic silicon surfaces. Appl. Phys. Lett. 62, 1362–1364 (1993)

    Article  CAS  Google Scholar 

  55. Zhang, R.Q., Lifshitz, Y., Ma, D.D.D., Zhao, Y.L., Frauenheim, T., Lee, S.T., Tong, S.Y.: Structures and energetics of hydrogen-terminated silicon nanowire surfaces. J. Chem. Phys. 123, 144703 (2005)

    Article  CAS  Google Scholar 

  56. Mitchell, D.R.G.: Contamination mitigation strategies for scanning transmission electron microscopy. Micron 73, 36–46 (2015)

    Article  CAS  Google Scholar 

  57. Dürr, M., Höfer, U.: Dissociative adsorption of molecular hydrogen on silicon surfaces. Surf. Sci. Rep. 61, 465–526 (2006)

    Article  Google Scholar 

  58. Henderson, M.A.: The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002)

    Article  CAS  Google Scholar 

  59. Germann, G.J., Cohen, S.R., Neubauer, G., Mcclelland, G.M., Seki, H., Coulman, D.: Atomic scale friction of a diamond tip on diamond (100)-surfacne and (111)-surface. J. Appl. Phys. 73, 163–167 (1993)

    Article  CAS  Google Scholar 

  60. Martin, J.M., Donnet, C., Le Mogne, T., Epicier, T.: Superlubricity of molybdenum disulphide. Phys. Rev. B 48, 10583 (1993)

    Article  CAS  Google Scholar 

  61. Carpick, R.W., Sasaki, D.Y., Burns, A.R.: Large friction anisotropy of a polydiacetylene monolayer. Tribol. Lett. 7, 79–85 (1999)

    Article  CAS  Google Scholar 

  62. Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  63. Ko, J.S., Gellman, A.J.: Friction anisotropy at Ni (100)/Ni (100) interfaces. Langmuir 16, 8343–8351 (2000)

    Article  CAS  Google Scholar 

  64. Lucas, M., Zhang, X., Palaci, I., Klinke, C., Tosatti, E., Riedo, E.: Hindered rolling and friction anisotropy in supported carbon nanotubes. Nat. Mater. 8, 876–881 (2009)

    Article  CAS  Google Scholar 

  65. Brukman, M.J., Gao, G.T., Nemanich, R.J., Harrison, J.A.: Temperature dependence of single-asperity diamond-diamond friction elucidated using AFM and MD Simulations. J. Phys. Chem. C 112, 9358–9369 (2008)

    Article  CAS  Google Scholar 

  66. Mikulski, P.T., Harrison, J.A.: Periodicities in the properties associated with the friction of model self-assembled monolayers. Tribol. Lett. 10, 29–38 (2001)

    Article  CAS  Google Scholar 

  67. Mikulski, P.T., Herman, L.A., Harrison, J.A.: Odd and even model self-assembled monolayers: links between friction and structure. Langmuir 21, 12197–12206 (2005)

    Article  CAS  Google Scholar 

  68. Chandross, M., Grest, G.S., Stevens, M.J.: Friction between alkylsilane monolayers: molecular simulation of ordered monolayers. Langmuir 18, 8392–8399 (2002)

    Article  CAS  Google Scholar 

  69. Onodera, T., Morita, Y., Nagumo, R., Miura, R., Suzuki, A., Tsuboi, H., et al.: A computational chemistry study on friction of h-MoS2. Part II. Friction anisotropy. J. Phys. Chem. B 114, 15832–15838 (2010)

    Article  CAS  Google Scholar 

  70. Vazirisereshk, M.R., Hasz, K., Carpick, R.W., Martini, A.: Friction anisotropy of MoS2: effect of tip-sample contact quality. J. Phys. Chem. Lett. 11, 6900–6906 (2020)

    Article  CAS  Google Scholar 

  71. Qi, Y., Cheng, Y.-T., Cagin, T., Goddard, W.A., III.: Friction anisotropy at Ni (100)/(100) interfaces: molecular dynamics studies. Phys. Rev. B 66, 085420 (2002)

    Article  Google Scholar 

  72. Harrison, J.A., Brenner, D.W.: Simulated tribochemistry: an atomic-scale view of the wear of diamond. J. Am. Chem. Soc. 116, 10399–10402 (1994)

    Article  CAS  Google Scholar 

  73. Pastewka, L., Moser, S., Gumbsch, P., Moseler, M.: Anisotropic mechanical amorphization drives wear in diamond. Nat. Mater. 10, 34–38 (2011)

    Article  CAS  Google Scholar 

  74. Gao, G.T., Mikulski, P.T., Harrison, J.A.: Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124, 7202–7209 (2002)

    Article  CAS  Google Scholar 

  75. Gao, G.T., Mikulski, P.T., Chateauneuf, G.M., Harrison, J.A.: The effects of film structure and surface hydrogen on the properties of amorphous carbon films. J. Phys. Chem. B 107, 11082–11090 (2003)

    Article  CAS  Google Scholar 

  76. Schall, J.D., Gao, G.T., Harrison, J.A.: Effects of adhesion and transfer film formation on the tribology of self-mated DLC contacts. J. Phys. Chem. C 114, 5321–5330 (2010)

    Article  CAS  Google Scholar 

  77. Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribology Letters 39, 49–61 (2010)

    Article  CAS  Google Scholar 

  78. Kunze, T., Posselt, M., Gemming, S., Seifert, G., Konicek, A.R., Carpick, R.W., et al.: Wear, plasticity, and rehybridization in tetrahedral amorphous carbon. Tribol. Lett. 53, 119–126 (2014)

    Article  CAS  Google Scholar 

  79. Romero, P.A., Pastewka, L., Von Lautz, J., Moseler, M.: Surface passivation and boundary lubrication of self-mated tetrahedral amorphous carbon asperities under extreme tribological conditions. Friction 2, 193–208 (2014)

    Article  CAS  Google Scholar 

  80. Peguiron, A., Moras, G., Walter, M., Uetsuka, H., Pastewka, L., Moseler, M.: Activation and mechanochemical breaking of C–C bonds initiate wear of diamond (110) surfaces in contact with silica. Carbon 98, 474–483 (2016)

    Article  CAS  Google Scholar 

  81. Harrison, J.A., Fallet, M., Ryan, K.E., Mooney, B.L., Knippenberg, M.T., Schall, J.D.: Recent developments and simulations utilizing bond-order potentials. Modelling Simul Mater Sci Eng 23, 074003 (2015)

    Article  Google Scholar 

  82. Sha, Z.-D., Sorkin, V., Branicio, P.S., Pei, Q.-X., Zhang, Y.-W., Srolovitz, D.J. Large-scale molecular dynamics simulations of wear in diamond-like carbon at the nanoscale. Applied Physics Letters 103 (2013).

  83. Dai, L., Sorkin, V., Zhang, Y.-W.: Effect of surface chemistry on the mechanisms and governing laws of friction and wear. ACS Appl. Mater. Interfaces 8, 8765–8772 (2016)

    Article  CAS  Google Scholar 

  84. Archard, J.F., Hirst, W.: The Wear of Metals under Unlubricated Conditions. Proc. R Soc. London A 236, 397 (1956)

    Article  Google Scholar 

  85. Chung, K.H.: Wear characteristics of atomic force microscopy tips: a reivew. Int. J. Precision Eng. Manufact. 15, 2219–2230 (2014)

    Article  Google Scholar 

  86. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., et al.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181–185 (2010)

    Article  CAS  Google Scholar 

  87. Liu, J.J., Notbohm, J.K., Carpick, R.W., Turner, K.T.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4, 3763–3772 (2010)

    Article  CAS  Google Scholar 

  88. Maw, W., Stevens, F., Langford, S.C., Dickinson, J.T.: Single asperity tribochemical wear of silicon nitride studied by atomic force microscopy. J. Appl. Phys. 92, 5103–5109 (2002)

    Article  CAS  Google Scholar 

  89. Liu, J., Jiang, Y., Grierson, D.S., Sridharan, K., Shao, Y., Jacobs, T.D.B., et al.: Tribochemical wear of diamond-like carbon-coated atomic force microscope tips. ACS Appl. Mater. Interfaces 9, 35341–35348 (2017)

    Article  CAS  Google Scholar 

  90. Gotsmann, B., Lantz, M.A. Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101 (2008).

  91. Yang, Y., Huang, L., Shi, Y.: Adhesion suppresses atomic wear in single-asperity sliding. Wear 352, 31–41 (2016)

    Article  Google Scholar 

  92. Shao, Y., Jacobs, T.D.B., Jiang, Y., Turner, K.T., Carpick, R.W., Falk, M.L.: Multibond model of single-asperity tribochemical wear at the nanoscale. ACS Appl. Mater. Interfaces 9, 35333–35340 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Prof. Mark O. Robbins for his ground-breaking contributions to the field of tribology, his mentorship, and the many wonderful discussions the authors have had with Prof. Robbins over the past 25 years. He was generous with his time, kind in spirit, and his absence will be felt by all in the field and most acutely by the authors. While Prof. Robbins is no longer with us, wherever he may be, we wish him fair winds and following seas in the journey. ZM would like to thank Dr. R. Bernal and Dr. H.J. Farnsworth for insightful conversations. RWC, ZM, and JDS acknowledge support from AFOSR/AOARD through Award No. FA2386–18–1-4083.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judith A. Harrison.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 KB)

Supplementary file2 (MP4 90959 KB)

Supplementary file3 (MPG 12780 KB)

Supplementary file4 (MPG 13944 KB)

Supplementary file5 (MPG 16200 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schall, J.D., Milne, Z.B., Carpick, R.W. et al. Molecular Dynamics Examination of Sliding History-Dependent Adhesion in Si–Si Nanocontacts: Connecting Friction, Wear, Bond Formation, and Interfacial Adhesion. Tribol Lett 69, 52 (2021). https://doi.org/10.1007/s11249-021-01431-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-021-01431-z

Keywords

Navigation