Skip to main content
Log in

Interaction Models and Molecular Simulation Systems of Steel–Organic Friction Modifier Interfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Ab-initio based benchmarking and improvements of molecular mechanics models for organic friction modifier (OFM) additives used in lubricants are presented. We found the generalized amber force field (GAFF2) appears well suited to model oil-steel interfaces moderated by fatty acids. However, explicit refinements are needed for describing the interactions of fatty acid glycerol esters with steel surfaces and were thus implemented into our OilF force field suite. Apart from analyzing single OFM molecule association to steel, we present a systematic scheme for elucidating the association of additive films to oil-hematite interfaces from molecular dynamics simulations. On this basis, ‘saturated’ interface models of densely packed OFMs are suggested.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Barr, D.: Modern Wind Turbines: A Lubrication Challenge Ethyl Petroleum Additives Ltd. https://www.machinerylubrication.com/Read/395/wind -turbine-lubrication (2019).

  2. Spikes, H.: Friction Modifier Additives. Tribol Lett 60, 5 (2015)

    Article  Google Scholar 

  3. Wells, H., Southcombe, J.: The theory and practice of lubrication: the ”Germ” process. J. Soc. Chem. Ind. 39, 51T-60T (1920)

    Article  Google Scholar 

  4. Langmuir, I.: The mechanism of the surface phenomena of flotation. J. Chem. Soc. Faraday Trans. 15, 62 (1920)

    Article  CAS  Google Scholar 

  5. Ovcharenko, R., Voloshina, E., Sauer, J.: Water adsorption and O-defect formation on Fe2O3(0001) surfaces. Phys. Chem. Chem. Phys. 18, 25560–25568 (2016)

    Article  CAS  Google Scholar 

  6. Wang, R.B., Hellman, A.: Surface terminations of hematite (α-Fe2O3) exposed to oxygen, hydrogen, or water dependence on the density functional theory methodology. J. Phys. Condens. Matter 30, 275002 (2018)

    Article  Google Scholar 

  7. Gattinoni, C., Ewen, J.P., Dini, D.: Adsorption of Surfactants on α-Fe2O3(0001): A Density Functional Theory Study. J. Phys. Chem. C 122, 20817–20826 (2018)

    Article  CAS  Google Scholar 

  8. Ewen, J.P., Gattinoni, C., Morgan, N., Spikes, H.A., Dini, D.: Nonequilibrium Molecular Dynamics Simulations of Organic Friction Modifiers Adsorbed on Iron Oxide Surfaces. Langmuir 32, 4450–4463 (2016)

    Article  CAS  Google Scholar 

  9. Schöttner, L., Ovcharenko, R., Nefedov, A., Voloshina, E., Wang, Y., Sauer, J., Wöll, C.: Interaction of water molecules with the α-fe2o3 0001 surface a combined experimental and computational study. J. Phys. Chem. C 123, 8324–8335 (2019)

    Article  Google Scholar 

  10. Ewen, J.P., Gattinoni, G., Thakkar, F., Morgan, N.: A comparison of classical force-fields for molecular dynamics simulations of lubricants. Materials 9, 651 (2016)

    Article  Google Scholar 

  11. Ectors, P., Zahn, D.: Benchmarking and optimization of molecular simulation models of zinc dialkyldithiophosphate and calcium sulfonate oil additives. J. Mol. Model 25, 100 (2019)

    Article  Google Scholar 

  12. Wang, J., Wolf, R.M., Caldwell, J.W., Kollman, P.A., Case, D.A.: Development and testing of a general amber force field. J. Comput. Chem. 25, 1157 (2004)

    Article  CAS  Google Scholar 

  13. OilF is a commercial force-field. However, upon request for non-profit research, parameters can be obtained free of charge via www.chemistry.nat.fau.eu/ccc/groups/zahn-group/research

  14. Gwoździk, M.: Characteristic of Crystallite Sizes and Lattice Deformations Changes in the Oxide Layer Formed on Steel Operated for a Long Time at an Elevated Temperature. Solid State Phenom. 203–204, 204–207 (2013)

    Article  Google Scholar 

  15. Bertrand, N., Desgranges, C., Poquillon, D.M., Lafont, C., Monceau, D.: Iron Oxidation at Low Temperature (260–500 °C) in Air and the Effect of Water Vapor. Oxid Met 73, 139–162 (2010)

    Article  CAS  Google Scholar 

  16. Hartman, P.: The effect of surface relaxation on crystal habit: Cases of corundum (α-Al 2 O 3) and Hematite (α-Fe 2 O 3). J. Cryst. Growth 96, 667–672 (1989)

    Article  CAS  Google Scholar 

  17. Plimpton, S.: Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  CAS  Google Scholar 

  18. Nosé, S.: A Molecular-Dynamics Method for Simulations in the Canonical Ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  Google Scholar 

  19. Hoover, W.G.: Canonical Dynamics: Equilibrium Phase-Space Distributions. Phys. Rev. A. 31, 1695–1697 (1985)

    Article  CAS  Google Scholar 

  20. Harvey, S.C., Tan, R.K.-Z., Cheatham, T.E.: The flying ice cube: Velocity rescaling in molecular dynamics leads to violation of energy equipartition. J. Comput. Chem. 19, 726–740 (1998)

    Article  CAS  Google Scholar 

  21. Catlow, C.R.A.: Point defect and electronic properties of uranium dioxide Proc. R. Soc. Lond. A353533–561 (1977).

  22. Lewis, G.V., Catlow, C.R.A.: Potential models for ionic oxides. J. Phys. C Solid State Phys. 18, 1149–1161 (1985)

    Article  CAS  Google Scholar 

  23. Debus, C., Wu, B., Kollmann, T., Duchstein, P., Siglreitmeier, M., Herrera, S., Benke, D., Kisailus, D., Schwahn, D., Pipich, V., Faivre, D., Zahn, D., Cölfen, H.: Bio-inspired Multifunctional Layered Magnetic Hybrid Materials. Bioinspir. Biomim. Nan. 8, 1–66 (2019)

    Google Scholar 

  24. Li, P., Song, L., Merz, F.: Parameterization of Highly Charged Metal Ions Using the 12-6-4 LJ-Type Nonbonded Model in Explicit Water. J. Phys. Chem. B 119, 883–895 (2015)

    Article  CAS  Google Scholar 

  25. Frisch, M.J. et al.: Gaussian 09 Revision C.01, Gaussian Inc., Wallingford CT (2010)

  26. Doig, M., Warrens, C.P., Camp, P.J.: Structure and Friction of Stearic Acid and Oleic Acid Films Adsorbed on Iron Oxide Surfaces in Squalane. Langmuir 30, 186–195 (2014)

    Article  CAS  Google Scholar 

  27. Wood, M.H., Casford, M.T., Steitz, R., Zarbakhsh, A., Welbourn, R.J.L., Clarke, S.M.: Comparative Adsorption of Saturated and Unsaturated Fatty Acids at the Iron Oxide/Oil Interface. Langmuir 32, 534–540 (2016)

    Article  CAS  Google Scholar 

  28. Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO - the Open Visualization Tool. Modelling Simul. Mater. Sci. Eng. 18, 015012 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Zahn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 8246 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pominov, A., Müller-Hillebrand, J., Träg, J. et al. Interaction Models and Molecular Simulation Systems of Steel–Organic Friction Modifier Interfaces. Tribol Lett 69, 14 (2021). https://doi.org/10.1007/s11249-020-01384-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01384-9

Keywords

Navigation