Skip to main content
Log in

Vulcanization Modeling and Mechanism for Improved Tribological Performance of Styrene-Butadiene Rubber at the Atomic Scale

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A novel molecular model of vulcanized styrene-butadiene rubber (SBR) was developed and experimentally verified to elucidate the enhanced tribological performance of vulcanized SBR over raw SBR. Vulcanization was modeled by cross- or self-linkages of sulfur (S) atoms with carbon (C) atoms in molecular chains. Frictional models were developed for vulcanized and raw styrene-butadiene rubber-ferrum (SBR-Fe) to study the atomic behavior at the frictional interface. The results at the atomic scale show considerable reductions in the coefficient of friction (COF) and the interfacial temperature of approximately 45.8% and 13.27% for the vulcanized SBR matrix, respectively, from those of raw SBR. In addition, the relative concentration (RC), the radial distribution function (RDF) and interaction energy of the vulcanized SBR are 21.61%, 6.68% and 60.12% lower than those of the raw SBR, respectively. The resulting decrease in the real contact area, adhesion and contact temperature at the interface can significantly improve the tribological properties of the vulcanized SBR over those of raw SBR. The results of this research study show how vulcanization can enhance the tribological properties of polymer composites at the atomic scale.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Natarajan, S.: Fundamental Principles of Polymeric Materials by Christopher S. Brazel and Stephen L. Rosen. Mater. Manuf. Process. 30, 1510–1511 (2015)

    Article  CAS  Google Scholar 

  2. Lorenz, B., Persson, B.N.J., Fortunato, G., Giustiniano, M., Baldoni, F.: Rubber friction for tire tread compound on road surfaces. J. Phys.-Condes. Matter. 25, 095007 (2013)

    Article  CAS  Google Scholar 

  3. Kruelák, J., Sykora, R., Hudec, I.: Sulphur and peroxide vulcanization of rubber compounds - overview. Chem. Pap. 70, 1533–1555 (2016)

    Google Scholar 

  4. Vulcanization. https://www.britannica.com/technology/vulcanization

  5. Roberts, A.D., Jackson, S.A.: Sliding friction of rubber. Nature 257, 118–120 (1975)

    Article  CAS  Google Scholar 

  6. Barquins, M., Roberts, A.D.: Rubber friction variation with rate and temperature: some new observations. J. Phys. D. Appl. Phys. 19(133), 1013–1026 (1986)

    Google Scholar 

  7. Duering, E.R., Kremer, K., Grest, G.S.: Relaxation of randomly cross-linked polymer melts. Phys. Rev. Lett. 67, 3531–3534 (1991)

    Article  CAS  Google Scholar 

  8. Duering, E.R., Kremer, K., Grest, G.S.: Structure and relaxation of end-linked polymer networks. J. Phys. Chem. 101, 8169–8192 (1994)

    Article  CAS  Google Scholar 

  9. Barsky, S.J., Plischke, M.: Order and localization in randomly cross-linked polymer networks. Phys. Rev. E. 53, 871–876 (1996)

    Article  CAS  Google Scholar 

  10. Barsky, S.J., Plischke, M., Joós, B., Zhou, Z.C.: Elastic properties of randomly cross-linked polymers. Phys. Rev. E. 54, 5370–5376 (1996)

    Article  CAS  Google Scholar 

  11. Plischke, M., Barsky, S.J.: Molecular dynamics study of the vulcanization transition. Phys. Rev. E. 58, 3347–3352 (1998)

    Article  CAS  Google Scholar 

  12. Barsky, S., Plischke, M.: Molecular dynamics study of replica symmetry in the vulcanization transition. Phys. Rev. E. 60, 4528–4533 (1999)

    Article  CAS  Google Scholar 

  13. Bergström, J.S., Boyce, M.C.: Deformation of elastomeric networks: relation between molecular level deformation and classical statistical mechanics models of rubber elasticity. Macromolecules 34, 614–626 (2001)

    Article  CAS  Google Scholar 

  14. Oberdisse, J., Ianniruberto, G., Greco, F., Marrucci, G.: Mechanical properties of end-crosslinked entangled polymer networks using sliplink Brownian dynamics simulations. Rheol. Acta. 46, 95–109 (2006)

    Article  Google Scholar 

  15. Koga, T., Tanaka, F.: Elastic properties of polymer networks with sliding junctions. Eur. Phys. J. E. 17, 225–229 (2005)

    Article  CAS  Google Scholar 

  16. Bhawe, D.M., Cohen, C., Escobedo, F.A.: Effect of chain stiffness and entanglements on the elastic behavior of end-linked elastomers. J. Phys. Chem. 123, 014909 (2005)

    Article  CAS  Google Scholar 

  17. Rigby, D., Sun, H., Eichinger, B.E.: Computer simulations of poly(ethylene oxide): force field, pvt diagram and cyclization behaviour. Polym. Int. 44, 311–330 (1997)

    Article  CAS  Google Scholar 

  18. Sun, H.: COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase Applications- Overview with Details on Alkane and Benzene Compounds. J. Phys. Chem. B. 102, 7338–7364 (1998)

    Article  CAS  Google Scholar 

  19. Yin, B., Peng, Z.J., Liang, J., Jin, K., Zhu, S., Yang, J., Qiao, Z.H.: Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation. Tribol. Int. 97, 97–107 (2016)

    Article  CAS  Google Scholar 

  20. Pan, D., Fan, B.I., Qi, X.W., Yang, Y.L., Hao, X.H.: Investigation of PTFE tribological properties using molecular dynamics simulation. Tribol. Lett. 67, 28 (2019)

    Article  CAS  Google Scholar 

  21. Osei-Agyemang, E., Berkebile, S., Martini, A.: Decomposition mechanisms of anti-wear lubricant additive tricresyl phosphate on iron surfaces using DFT and atomistic thermodynamic studies. Tribol. Lett. 66, 48 (2018)

    Article  CAS  Google Scholar 

  22. Duan, C.J., Yang, Z.H., Zhang, D., Tao, L.M., Wang, Q.H., Wang, T.M.: Effect of isomerism on mechanical and tribological properties of thermoplastic polyimide films. Tribol. Int. 121, 373–380 (2018)

    Article  CAS  Google Scholar 

  23. Jin, Y.L., Duan, H.T., Cheng, B.X., Wei, L., Tu, J.S.: Synthesis of a Multi-phenol Antioxidant and Its Compatibility with Alkyl Diphenylamine and ZDDP in Ester Oil. Tribol. Lett. 67, 58 (2019)

    Article  CAS  Google Scholar 

  24. Song, J.F., Zhao, G.: A molecular dynamics study on water lubrication of PTFE sliding against copper. Tribol. Int. 136, 234–239 (2019)

    Article  CAS  Google Scholar 

  25. Li, Y.L., Wang, S.J., Arash, B., Wang, Q.: A study on tribology of nitrile-butadiene rubber composites by incorporation of carbon nanotubes: Molecular dynamics simulations. Carbon 100, 145–150 (2016)

    Article  CAS  Google Scholar 

  26. Song, J.F., Lei, H., Zhao, G.: Improved mechanical and tribological properties of polytetrafluoroethylene reinforced by carbon nanotubes: A molecular dynamics study. Comput. Mater. Sci. 168, 131–136 (2019)

    Article  CAS  Google Scholar 

  27. Li, Y.L., Wang, S.J., Wang, Q.: A molecular dynamics simulation study on enhancement of mechanical and tribological properties of polymer composites by introduction of graphene. Carbon 111, 538–545 (2017)

    Article  CAS  Google Scholar 

  28. Luo, Y.L., Wu, Y.P., Luo, K.Q., Cai, F., Zhai, T.S., Wu, S.Z.: Structures and properties of alkanethiol-modified graphene oxide/solution -polymerized styrene butadiene rubber composites: Click chemistry and molecular dynamics simulation. Compos. Sci. Technol. 161, 32–38 (2018)

    Article  CAS  Google Scholar 

  29. Li, Y.L., Wang, S.J., Wang, Q., Xing, M.: Molecular dynamics simulations of tribology properties of NBR (Nitrile-Butadiene Rubber) /carbon nanotube composites. Compos. Pt. B-Eng. 97, 62–67 (2016)

    Article  CAS  Google Scholar 

  30. Li, Y., Wu, Y.P., Luo, Y.L., Chan, T.W., Zhang, L.Q., Wu, S.Z.: A combined experimental and molecular dynamics simulation study on the structures and properties of three types of styrene butadiene rubber. Mater. Today Commun. 4, 35–41 (2015)

    Article  CAS  Google Scholar 

  31. Hou, Y., Zhang, H.F., Wu, J.F., Wang, L.B.: Study on the microscopic friction between tire and asphalt pavement based on molecular dynamics simulation. International Journal of Pavement Research and Technology. 11, 205–212 (2018)

    Article  Google Scholar 

  32. Chawla, R., Sharma, S.: A molecular dynamics study on Young’s modulus and tribology of carbon nanotube reinforced styrene-butadiene rubber. J. Mol. Model. 24, 96 (2018)

    Article  CAS  Google Scholar 

  33. Hoover, W.G.: Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A. 31, 1695–1697 (1985)

    Article  CAS  Google Scholar 

  34. Nosé, S.: A Molecular-dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984)

    Article  Google Scholar 

  35. Berendsen, H.J.C., Postma, J.P.M., Van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984)

    Article  CAS  Google Scholar 

  36. Petronela, D., Nergis, B., Cimpoesu, N., Vizureanu, P., Baciu, C., Bejinariu, C.: Tribological characterization of phosphate conversion coating and rubber paint coating deposited on carbon steel carabiners surfaces. Mater. Today: Proc. 19, 969–978 (2019)

    Google Scholar 

  37. Moreno-Ríos, M., Gallardo-Hernández, E.A., Yáñez-Escoto, M.J., Márquez-Tamayo, L.A., Iturbe-Salas, E.: Evaluation of surface modification in a steel track for the rubber tyred Metro. Wear 426–427, 1265–1271 (2019)

    Article  CAS  Google Scholar 

  38. Ismailov, A., Järveläinen, M., Levänen, E.: Problematics of friction in a high-speed rubber-wheel wear test system: A case study of irregularly rough steel in water lubricated contact. Wear 408–409, 65–71 (2018)

    Article  CAS  Google Scholar 

  39. Setiyana, B., Jamari, J., Sugiyanto, J.S.: Stress analysis of the friction contact on filled styrene butadiene rubber by a blade indentation: a numerical investigation. Mater. Today: Proc. 13(1), 293–298 (2019)

    Google Scholar 

  40. Accelrys Software Inc. Materials Studio Release Notes, Release 7.0, San Diego: Accelrys Software Inc. 2013.

  41. Droste, D.H., Dibenedetto, A.T.: The glass transition temperature of filled polymers and its effect on their physical properties. J. Appl. Polym. Sci. 13, 2149–2168 (1969)

    Article  CAS  Google Scholar 

  42. Eslami, H., Müller-Plathe, F.: Structure and mobility of poly(ethylene terephthalate): a molecular dynamics simulation study. Macromolecules 42, 8241–8250 (2009)

    Article  CAS  Google Scholar 

  43. Dong, J., Song, T.J., Cui, Y., Zhang, H.Q., Hu, C.Z., Tao, H.P.: Synthesis and dynamic mechanical properties of solution polymerized butadiene-styrene. China Elastomerics. 20, 30–33 (2010)

    CAS  Google Scholar 

  44. Sasaki, T., Uchida, T., Sakurai, K.: Effect of crosslink on the characteristic length of glass transition of network polymers. J. Polym. Sci. Part B: Polym. Phys. 44, 1958–1966 (2006)

    Article  CAS  Google Scholar 

  45. Alves, N.M., Gómez Ribelles, J.L., Mano, J.F.: Enthalpy relaxation studies in polymethyl methacrylate networks with different crosslinking degrees. Polymer 46, 491–504 (2005)

    Article  CAS  Google Scholar 

  46. Grosch, K.A.: The Speed and Temperature Dependence of Rubber Friction and Its Bearing on the Skid Resistance of Tires. The Physics of Tire Traction, Springer, US (1974)

    Book  Google Scholar 

  47. Persson, B.N.J., Tosatti, E.: Qualitative theory of rubber friction and wear. J. Chem. Phys. 112, 2021–2029 (2000)

    Article  CAS  Google Scholar 

  48. Savio, D., Fillot, N., Vergne, P., Zaccheddu, M.: A model for wall slip prediction of confined n-alkanes: Effect of wall fluid interaction versus fluid resistance. Tribol Lett 46(1), 11–22 (2012)

    Article  CAS  Google Scholar 

  49. Hammerschmidt, J.A., Gladfelter, W.L., Haugstad, G.: Probing Polymer Viscoelastic Relaxations with Temperature-Controlled Friction Force Microscopy. Macromolecules 32, 3360–3367 (1999)

    Article  CAS  Google Scholar 

  50. Sosnovskii, L.A.: Statistical model for a deformable solid with a critical volume and some of its applications. Communication 3. Strength Mater. 24, 646–653 (1992)

    Google Scholar 

Download references

Acknowledgements

We acknowledge financial support for this study from the National Natural Science Foundation of China (Grant No. 51975300) and the Foundation of the State Key Laboratory of Automotive Simulation and Control (Grant No. 20171112). This research study was also partially supported by a grant from the K.C. Wong Magna Fund at Ningbo University and by the National Supercomputer Center in Shenzhen, China (NSCC-SZ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haibo Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Huang, H., Li, W. et al. Vulcanization Modeling and Mechanism for Improved Tribological Performance of Styrene-Butadiene Rubber at the Atomic Scale. Tribol Lett 68, 83 (2020). https://doi.org/10.1007/s11249-020-01321-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-020-01321-w

Keywords

Navigation