Skip to main content

Wear Mechanism of High Chromium White Cast Iron and Its Microstructural Evolutions During the Comminution Process


The detailed deformation mechanism and its microstructural modifications of white cast iron grinding balls used in comminution have been investigated using transmission electron microscopy (TEM) and XRD. De-shaping is the primary mode of ball consumption, and fracture of balls is a relatively uncommon failure mode. Deshaping is the manifestation of abrasive wear caused during the operation, and abrasive wear is accompanied by microstructural changes. Micro-cutting is the foremost mechanism. The original microstructure of the matrix of unused grinding balls was observed to have twinned martensite with ω phase with an orientation relation of M-(1\(\bar{2}\)1)//T-(\(\bar{1}2\bar{1}\)) and {\(\bar{1}\bar{1}3\)}M//{11\(\bar{3}\)}T and M-(1\(\bar{2}\) 10)//ω(0\(\bar{1}\) 10) and {\(\bar{1}\bar{1}3\)}M//{1\(\bar{2}\) 1\(\bar{3}\)}ω. However, the presence of unstable ω phase, located at the twinning boundary, causes detwinning and forms lath martensite during tempering caused by localized heat during abrasion. Nano-cementite is formed at lath boundaries. Some cracking was observed, but the crack orientation is radial, indicating a response to tangential stresses associated with abrasion as opposed to dynamic stress waves from high-angle impact. Tangential tensile stresses due to surface traction during the abrasion process lead to radial cracks in brittle eutectic carbides, which join up and cause material removal.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Madlool, N.A., Saidur, R., Hossain, M.S., Rahim, N.A.: A critical review on energy use and savings in the cement industries. Renew. Sust. Energ. Rev. 15, 2042–2060 (2011)

    Article  Google Scholar 

  2. 2.

    Atmaca, A., Kanoglu, M.: Reducing energy consumption of a raw mill in cement industry. Energy. 42, 261–269 (2012)

    Article  Google Scholar 

  3. 3.

    Qian, H.Y., Kong, Q.G., Zhang, B.L.: The effects of grinding media shapes on the grinding kinetics of cement clinker in ball mill. Powder Technol. 235, 422–425 (2013)

    CAS  Article  Google Scholar 

  4. 4.

    Wei, D., Craig, I.K.: Grinding mill circuits: a survey of control and economic concerns. Int. J Miner Process. 90, 56–66 (2009)

    CAS  Article  Google Scholar 

  5. 5.

    Massola, C.P., Chaves, A.P., Albertin, E.: J. Mater Res. Technol. 5, 282–288 (2016)

    Article  Google Scholar 

  6. 6.

    Gates, J.D., Gore, G.J., Hermand, M.J.-P., Guerineau, M.J.-P., Martin, P.B., Saad, J.: The meaning of high stress abrasion and its application in white cast irons. Wear 263, 6–35 (2007)

    CAS  Article  Google Scholar 

  7. 7.

    Sprung, S.: Cement. Ullmann's Encyclopedia of Industrial Chemistry, Weinheim (2012)

    Google Scholar 

  8. 8.

    Ludwig, H.M., Zhang, W.: Research review of cement clinker chemistry. Cement Concr. Res. 78, 24–37 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    Liang, H., Craven, D.: Tribology in Chemical-Mechanical Planarization. Taylor and Francis, Boca Raton (2005)

    Book  Google Scholar 

  10. 10.

    Sare, I.R.: Repeated impact-abrasion of ore-crushing hammers. Wear 87, 207–225 (1983)

    Article  Google Scholar 

  11. 11.

    Laird II, G.: An investigation of ball-on-ball impact. Exp. Mech. 29, 300–306 (1989)

    Article  Google Scholar 

  12. 12.

    Laird II, G., Collins, W.K., Blickensderfer, R.: Crack propagation and spalling of white cast iron balls subjected to repeated impacts. Wear 124, 217–235 (1988)

    CAS  Article  Google Scholar 

  13. 13.

    L. Lutterotti, Materials analysis using diffraction, 2013

  14. 14.

    Lu, Y., Yu, H., Sisson Jr., R.D.: The effect of carbon content on the c/a ratio of as-quenched martensite in Fe-C alloys. Mater. Sci. Eng. 700, 592–597 (2017)

    CAS  Article  Google Scholar 

  15. 15.

    Cullity, B.D., Stock, S.R.: Elements of X-ray Diffraction. Prentice Hall, New Jersey (2001)

    Google Scholar 

  16. 16.

    Sare, I.R., Arnold, B.K., Dunlop, G.A., Lloy, P.G.: Repeated impact-abrasion testing of alloy white cast irons. Wear 162–164, 790–801 (1993)

    Article  Google Scholar 

  17. 17.

    Blau, P.J.: ASM Handbook, Volume 18: Friction, Lubrication, and Wear Technology, pp. 339–340. Materials Park, ASM International (1992)

    Google Scholar 

  18. 18.

    Wang, C., Chen, Y., Han, J., Ping, D., Zhao, X.: Microstructure of ultrahigh carbon martensite. Prog. Nat. Sci. 28, 749–753 (2018)

    CAS  Article  Google Scholar 

  19. 19.

    Liu, X., Man, T.H., Yin, J., Lu, X., Guo, S.Q., Ohmura, T., Ping, D.H.: In situ heating TEM observations on carbide formation and α-Fe recrystallization in twinned martensite 2. Sci. Rep. 8, 14454 (2018)

    CAS  Article  Google Scholar 

  20. 20.

    Hsiung, L.M., Lassila, D.H.: Shock-induced deformation twinning and omega transformation in tantalum and tantalum tungsten alloys. Acta Mater. 48, 4851–4865 (2000)

    CAS  Article  Google Scholar 

  21. 21.

    Ping, D.H.: Review on ω phase in body-centered cubic metals and alloy. Acta Metall. Sin. (Engl. Lett.) 27(1), 1–11 (2014)

    CAS  Article  Google Scholar 

  22. 22.

    Togo, A., Tanaka, I.: Evolution of crystal structures in metallic elements. Phys. Rev. B 87(184104), 1–6 (2013)

    Google Scholar 

  23. 23.

    Ping, D.H.: Understanding solid-solid (fcc ↔ ω + bcc) transition at atomic scale. Acta Metall. Sin. (Engl. Lett.) 28, 663–670 (2015)

    CAS  Article  Google Scholar 

  24. 24.

    Wu, S.Q., Ping, D.H., Mitarai, Y., Xiao, W., Yang, Y., Hu, Q.-M., Li, G.P., Yang, R.: {112} Twinning during ω to body-centered cubic transition. Acta Mater. 62, 122–128 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    Man, T.H., Liu, T.W., Ping, D.H., Ohmura, T.: TEM investigations on lath martensite substructure in quenched Fe-0.2C alloys. Mater. Charact. 135, 175–182 (2018)

    CAS  Article  Google Scholar 

  26. 26.

    Ping, D.H., Guo, S.Q., Imura, M., Liu, X., Ohmura, T., Ohnuma, M., Lu, X., Abe, T., Onodera, H.: Lath formation mechanisms and twinning as lath martensite substructures in an ultra low carbon iron alloy. Sci. Rep. 8, 14264 (2018).

    CAS  Article  Google Scholar 

  27. 27.

    Ping, D.H., Liu, T., Ohnuma, M., Ohmura, T., Abe, T., Onodera, H.: Microstructural evolution and carbides in quenched ultra-low carbon (Fe-C) alloys. ISIJ Int. 57, 1233–1240 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    Aldrich, C.: Consumption of steel grinding media in mills: a review. Min. Eng. 49, 77–91 (2013)

    CAS  Article  Google Scholar 

Download references


The authors are grateful to M/s Shree Cements, Ltd., Kolkata, India, for providing the support for the investigations.


Funding was provided by Council of Scientific and Industrial Research, India.

Author information



Corresponding author

Correspondence to Minal Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shah, M., Sahoo, K.L., Das, S.K. et al. Wear Mechanism of High Chromium White Cast Iron and Its Microstructural Evolutions During the Comminution Process. Tribol Lett 68, 77 (2020).

Download citation


  • Micro-cutting
  • Twinned martensite
  • Lath martensite
  • Detwinning