Persson, B.N.: Sliding Friction: Physical Principles and Applications. Springer Science, New York (2013)
Google Scholar
Cho, M.H., Ju, J., Kim, S.J., Jang, H.: Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear 260, 855–860 (2006)
CAS
Google Scholar
Savan, A., Pflüger, E., Voumard, P., Schröer, A., Simmonds, M.: Modern solid lubrication: recent developments and applications of MoS2. Lubr. Sci. 12, 185–203 (2000)
CAS
Google Scholar
Berman, D., Erdemir, A., Sumant, A.V.: Approaches for achieving superlubricity in two-dimensional materials. ACS Nano 12, 2122–2137 (2018)
CAS
Google Scholar
Kim, K.-S., Lee, H.-J., Lee, C., Lee, S.-K., Jang, H., Ahn, J.-H., Kim, J.-H., Lee, H.-J.: Chemical vapor deposition-grown graphene: the thinnest solid lubricant. ACS Nano 5, 5107–5114 (2011)
CAS
Google Scholar
Rapoport, L., Bilik, Y., Feldman, Y., Homyonfer, M., Cohen, S., Tenne, R.: Hollow nanoparticles of WS 2 as potential solid-state lubricants. Nature 387, 791 (1997)
CAS
Google Scholar
Xiao, H., Liu, S.: 2D nanomaterials as lubricant additive: a review. Mater. Des. 135, 319–332 (2017)
CAS
Google Scholar
Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014)
CAS
Google Scholar
Song, H.-J., Li, N.: Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Appl. Phys. A 105, 827–832 (2011)
CAS
Google Scholar
Zu, S.-Z., Han, B.-H.: Aqueous dispersion of graphene sheets stabilized by pluronic copolymers: formation of supramolecular hydrogel. J. Phys. Chem. C 113, 13651–13657 (2009)
CAS
Google Scholar
Hilton, M.R., Bauer, R., Didziulis, S.V., Dugger, M.T., Keem, J.M., Scholhamer, J.: Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf. Coat. Technol. 53, 13–23 (1992)
CAS
Google Scholar
Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)
CAS
Google Scholar
Liu, K., Yan, Q., Chen, M., Fan, W., Sun, Y., Suh, J., Fu, D., Lee, S., Zhou, J., Tongay, S.: Elastic properties of chemical-vapor-deposited monolayer MoS2, WS2, and their bilayer heterostructures. Nano Lett. 14, 5097–5103 (2014)
CAS
Google Scholar
Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)
CAS
Google Scholar
Lee, C., Li, Q., Kalb, W., Liu, X.-Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science 328, 76–80 (2010)
CAS
Google Scholar
Spear, J.C., Ewers, B.W., Batteas, J.D.: 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today 10, 301–314 (2015)
CAS
Google Scholar
Liu, L., Zhou, M., Jin, L., Li, L., Mo, Y., Su, G., Li, X., Zhu, H., Tian, Y.: Recent advances in friction and lubrication of graphene and other 2D materials: Mechanisms and applications. Friction 7, 199–216 (2019)
Google Scholar
Reguzzoni, M., Fasolino, A., Molinari, E., Righi, M.C.: Potential energy surface for graphene on graphene: ab initio derivation, analytical description, and microscopic interpretation. Phys. Rev. B 86, 245434 (2012)
Google Scholar
Liang, T., Sawyer, W.G., Perry, S.S., Sinnott, S.B., Phillpot, S.R.: First-principles determination of static potential energy surfaces for atomic friction in Mo S 2 and Mo O 3. Phys. Rev. B 77, 104105 (2008)
Google Scholar
Wang, L.-F., Ma, T.-B., Hu, Y.-Z., Wang, H., Shao, T.-M.: Ab initio study of the friction mechanism of fluorographene and graphane. J. Phys. Chem. C 117, 12520–12525 (2013)
CAS
Google Scholar
Shi, R., Gao, L., Lu, H., Li, Q., Ma, T.-B., Guo, H., Du, S., Feng, X.-Q., Zhang, S., Liu, Y.: Moiré superlattice-level stick-slip instability originated from geometrically corrugated graphene on a strongly interacting substrate. 2D Mater. 4, 025079 (2017)
Google Scholar
Wang, L.-F., Ma, T.-B., Hu, Y.-Z., Zheng, Q., Wang, H., Luo, J.: Superlubricity of two-dimensional fluorographene/MoS2 heterostructure: a first-principles study. Nanotechnology 25, 385701 (2014)
Google Scholar
Levita, G., Molinari, E., Polcar, T., Righi, M.C.: First-principles comparative study on the interlayer adhesion and shear strength of transition-metal dichalcogenides and graphene. Phys. Rev. B 92, 085434 (2015)
Google Scholar
Dong, Y.: Effects of substrate roughness and electron–phonon coupling on thickness-dependent friction of graphene. J. Phys. D 47, 055305 (2014)
Google Scholar
Ding, Z., Pei, Q.-X., Jiang, J.-W., Huang, W., Zhang, Y.-W.: Interfacial thermal conductance in graphene/MoS2 heterostructures. Carbon 96, 888–896 (2016)
CAS
Google Scholar
Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons's laws for static friction. Phys. Rev. Lett. 86, 1295 (2001)
Google Scholar
Müser, M.H.: Nature of mechanical instabilities and their effect on kinetic friction. Phys. Rev. Lett. 89, 224301 (2002)
Google Scholar
Guo, Y., Qiu, J., Guo, W.: Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization. Nanoscale 8, 575–580 (2016)
CAS
Google Scholar
Vazirisereshk, M.R., Ye, H., Ye, Z., Otero-de-la-Roza, A., Zhao, M.-Q., Gao, Z., Johnson, A.C., Johnson, E.R., Carpick, R.W., Martini, A.: Origin of nanoscale friction contrast between supported graphene, MoS2, and a graphene/MoS2 heterostructure. Nano Lett. 19, 5496–5505 (2019)
CAS
Google Scholar
Filleter, T., McChesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K., Bennewitz, R.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 086102 (2009)
CAS
Google Scholar
Sheehan, P.E., Lieber, C.M.: Nanotribology and nanofabrication of MoO3 structures by atomic force microscopy. Science 272, 1158–1161 (1996)
CAS
Google Scholar
Popov, V.L., Gray, J.: Prandtl-Tomlinson model: History and applications in friction, plasticity, and nanotechnologies. ZAMM 92, 683–708 (2012)
Google Scholar
Schwarz, U.D., Hölscher, H.: Exploring and explaining friction with the Prandtl-Tomlinson model. ACS Nano 10, 38–41 (2016)
CAS
Google Scholar
Mounet, N., Gibertini, M., Schwaller, P., Campi, D., Merkys, A., Marrazzo, A., Sohier, T., Castelli, I.E., Cepellotti, A., Pizzi, G.: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018)
CAS
Google Scholar
Zhou, J., Shen, L., Costa, M.D., Persson, K.A., Ong, S.P., Huck, P., Lu, Y., Ma, X., Chen, Y., Tang, H., Feng, Y.P.: 2DMatPedia, an open computational database of two-dimensional materials from top-down and bottom-up approaches. Sci Data 6, 86 (2019)
Google Scholar
Gavrishchaka, V., Senyukova, O., Koepke, M.: Synergy of physics-based reasoning and machine learning in biomedical applications: towards unlimited deep learning with limited data. Adv. Phys. 4, 1582361 (2019)
Google Scholar
Ye, Z., Otero-De-La-Roza, A., Johnson, E.R., Martini, A.: Oscillatory motion in layered materials: graphene, boron nitride, and molybdenum disulfide. Nanotechnology 26, 165701 (2015)
Google Scholar
Hermann, K.: Periodic overlayers and moiré patterns: theoretical studies of geometric properties. J. Phys. 24, 314210 (2012)
Google Scholar
Popov, A.M., Lebedeva, I.V., Knizhnik, A.A., Lozovik, Y.E., Potapkin, B.V.: Molecular dynamics simulation of the self-retracting motion of a graphene flake. Phys. Rev. B 84, 245437 (2011)
Google Scholar
Smolyanitsky, A.: Effects of thermal rippling on the frictional properties of free-standing graphene. RSC Adv. 5, 29179–29184 (2015)
CAS
Google Scholar
Sahoo, S., Gaur, A.P., Ahmadi, M., Guinel, M.J.-F., Katiyar, R.S.: Temperature-dependent Raman studies and thermal conductivity of few-layer MoS2. J. Phys. Chem. C 117, 9042–9047 (2013)
CAS
Google Scholar
Mate, C.M.: Tribology on the small scale: a bottom up approach to friction, lubrication, and wear. Oxford University Press, Oxford (2008)
Google Scholar
Levita, G., Cavaleiro, A., Molinari, E., Polcar, T., Righi, M.C.: Sliding properties of MoS2 layers: load and interlayer orientation effects. J. Phys. Chem. C 118, 13809–13816 (2014)
CAS
Google Scholar
Ko, J.-H., Kwon, S., Byun, I.-S., Choi, J.S., Park, B.H., Kim, Y.-H., Park, J.Y.: Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol. Lett. 50, 137–144 (2013)
CAS
Google Scholar
Kwon, S., Lee, K.E., Lee, H., Koh, S.J., Ko, J.-H., Kim, Y.-H., Kim, S.O., Park, J.Y.: The effect of thickness and chemical reduction of graphene oxide on nanoscale friction. J. Phys. Chem. B 122, 543–547 (2017)
Google Scholar
Li, Q., Liu, X.-Z., Kim, S.-P., Shenoy, V.B., Sheehan, P.E., Robinson, J.T., Carpick, R.W.: Fluorination of graphene enhances friction due to increased corrugation. Nano Lett. 14, 5212–5217 (2014)
CAS
Google Scholar
Cammarata, A., Polcar, T.: Overcoming nanoscale friction barriers in transition metal dichalcogenides. Phys. Rev. B 96, 085406 (2017)
Google Scholar
Dong, Y., Wu, X., Martini, A.: Atomic roughness enhanced friction on hydrogenated graphene. Nanotechnology 24, 375701 (2013)
Google Scholar
Wang, L.-F., Ma, T.-B., Hu, Y.-Z., Wang, H.: Atomic-scale friction in graphene oxide: an interfacial interaction perspective from first-principles calculations. Phys. Rev. B 86, 125436 (2012)
Google Scholar
Kwon, S., Ko, J.-H., Jeon, K.-J., Kim, Y.-H., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12, 6043–6048 (2012)
CAS
Google Scholar
Wendler, F., Knorr, A., Malic, E.: Ultrafast carrier dynamics in Landau-quantized graphene. Nanophotonics 4, 224–249 (2015)
CAS
Google Scholar
Kaul, A.B.: Two-dimensional layered materials: Structure, properties, and prospects for device applications. J. Mater. Res. 29, 348–361 (2014)
CAS
Google Scholar
Peng, B., Zhang, H., Shao, H., Xu, Y., Zhang, X., Zhu, H.: Thermal conductivity of monolayer MoS 2, MoSe 2, and WS 2: interplay of mass effect, interatomic bonding and anharmonicity. RSC Adv. 6, 5767–5773 (2016)
CAS
Google Scholar
Fang, L., Liu, D.-M., Guo, Y., Liao, Z.-M., Luo, J.-B., Wen, S.-Z.: Thickness dependent friction on few-layer MoS2, WS2, and WSe2. Nanotechnology 28, 245703 (2017)
Google Scholar
Ataca, C., Sahin, H., Ciraci, S.: Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012)
CAS
Google Scholar
Liepins, G.E., Uppuluri, V.: Data Quality Control: Theory and Pragmatics. CRC Press, Boca Raton (1990)
Google Scholar
Scholkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT press, Cambridge (2001)
Google Scholar
Gelman, A., Carlin, J.B., Stern, H.S., Dunson, D.B., Vehtari, A., Rubin, D.B.: Bayesian Data Analysis. Chapman and Hall/CRC, Boca Raton (2013)
Google Scholar
Raina, R., Ng, A.Y., Koller, D.: Constructing informative priors using transfer learning. In: Proceedings of the 23rd international conference on Machine learning, pp. 713–720. ACM, Place ACM (2006)
Stuart, S.J., Tutein, A.B., Harrison, J.A.: A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112, 6472–6486 (2000)
CAS
Google Scholar
Rappé, A.K., Casewit, C.J., Colwell, K., Goddard III, W.A., Skiff, W.M.: UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)
Google Scholar
Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262 (1985)
CAS
Google Scholar
Susarla, S., Manimunda, P., Morais Jaques, Y., Hachtel, J.A., Idrobo, J.C., Syed Amnulla, S.A., Galvão, D.S., Tiwary, C.S., Ajayan, P.M.: Deformation mechanisms of vertically stacked WS2/MoS2 heterostructures; the role of interfaces. ACS Nano 12, 4036–4044 (2018)
CAS
Google Scholar
Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)
CAS
Google Scholar
Marom, N., Bernstein, J., Garel, J., Tkatchenko, A., Joselevich, E., Kronik, L., Hod, O.: Stacking and registry effects in layered materials: the case of hexagonal boron nitride. Phys. Rev. Lett. 105, 046801 (2010)
Google Scholar
Fessler, G., Eren, B., Gysin, U., Glatzel, T., Meyer, E.: Friction force microscopy studies on SiO2 supported pristine and hydrogenated graphene. Appl. Phys. Lett. 104, 041910 (2014)
Google Scholar
Johari, P., Shenoy, V.B.: Tunable dielectric properties of transition metal dichalcogenides. ACS Nano 5, 5903–5908 (2011)
CAS
Google Scholar
Akinwande, D., Brennan, C.J., Bunch, J.S., Egberts, P., Felts, J.R., Gao, H., Huang, R., Kim, J.-S., Li, T., Li, Y.: A review on mechanics and mechanical properties of 2D materials—graphene and beyond. Extreme Mech. Lett. 13, 42–77 (2017)
Google Scholar
Peimyoo, N., Shang, J., Yang, W., Wang, Y., Cong, C., Yu, T.: Thermal conductivity determination of suspended mono-and bilayer WS 2 by Raman spectroscopy. Nano Res. 8, 1210–1221 (2015)
CAS
Google Scholar
Ma, Y.-Z., Valkunas, L., Bachilo, S.M., Fleming, G.R.: Exciton binding energy in semiconducting single-walled carbon nanotubes. J. Phys. Chem. B 109, 15671–15674 (2005)
CAS
Google Scholar
Olsen, T., Latini, S., Rasmussen, F., Thygesen, K.S.: Simple screened hydrogen model of excitons in two-dimensional materials. Phys. Rev. Lett. 116, 056401 (2016)
Google Scholar
Wu, J., Wang, B., Wei, Y., Yang, R., Dresselhaus, M.: Mechanics and mechanically tunable band gap in single-layer hexagonal boron-nitride. Mater. Res. Lett. 1, 200–206 (2013)
CAS
Google Scholar
Aksoy, R., Selvi, E., Ma, Y.: X-ray diffraction study of molybdenum diselenide to 359 GPa. J. Phys. Chem. Solids 69, 2138–2140 (2008)
CAS
Google Scholar
Yin, M., Cohen, M.L.: Structural theory of graphite and graphitic silicon. Phys. Rev. B 29, 6996 (1984)
CAS
Google Scholar
Fasolino, A., Los, J., Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858 (2007)
CAS
Google Scholar
Niyogi, S., Bekyarova, E., Itkis, M.E., McWilliams, J.L., Hamon, M.A., Haddon, R.C.: Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006)
CAS
Google Scholar
Topsakal, M., Ciraci, S.: Elastic and plastic deformation of graphene, silicene, and boron nitride honeycomb nanoribbons under uniaxial tension: A first-principles density-functional theory study. Phys. Rev. B 81, 024107 (2010)
Google Scholar
Shinde, P.P., Kumar, V.: Direct band gap opening in graphene by BN doping: ab initio calculations. Phys. Rev. B 84, 125401 (2011)
Google Scholar
Bernardi, M., Palummo, M., Grossman, J.C.: Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett. 13, 3664–3670 (2013)
CAS
Google Scholar
Wu, X., Varshney, V., Lee, J., Pang, Y., Roy, A.K., Luo, T.: How to characterize thermal transport capability of 2D materials fairly?–Sheet thermal conductance and the choice of thickness. Chem. Phys. Lett. 669, 233–237 (2017)
CAS
Google Scholar
Peng, B., Zhang, H., Shao, H., Xu, Y., Ni, G., Zhang, R., Zhu, H.: Phonon transport properties of two-dimensional group-IV materials from ab initio calculations. Phys. Rev. B 94, 245420 (2016)
Google Scholar
Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10, 3209–3215 (2010)
CAS
Google Scholar
Kern, G., Kresse, G., Hafner, J.: Ab initio calculation of the lattice dynamics and phase diagram of boron nitride. Phys. Rev. B 59, 8551 (1999)
CAS
Google Scholar
Lebedev, A.V., Lebedeva, I.V., Knizhnik, A.A., Popov, A.M.: Interlayer interaction and related properties of bilayer hexagonal boron nitride: ab initio study. RSC Adv. 6, 6423–6435 (2016)
CAS
Google Scholar
Wirtz, L., Marini, A., Rubio, A.: Excitons in boron nitride nanotubes: dimensionality effects. Phys. Rev. Lett. 96, 126104 (2006)
Google Scholar
Şahin, H., Ataca, C., Ciraci, S.: Electronic and magnetic properties of graphane nanoribbons. Phys. Rev. B 81, 205417 (2010)
Google Scholar
He, C., Zhang, C., Sun, L., Jiao, N., Zhang, K., Zhong, J.: Structure, stability and electronic properties of tricycle type graphane. Phys. Status Solidi (RRL) 6, 427–429 (2012)
CAS
Google Scholar
Topsakal, M., Cahangirov, S., Ciraci, S.: The response of mechanical and electronic properties of graphane to the elastic strain. Appl. Phys. Lett. 96, 091912 (2010)
Google Scholar
Leenaerts, O., Peelaers, H., Hernández-Nieves, A., Partoens, B., Peeters, F.: First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82, 195436 (2010)
Google Scholar
Li, Y., Zhou, Z., Shen, P., Chen, Z.: Structural and electronic properties of graphane nanoribbons. J. Phys. Chem. C 113, 15043–15045 (2009)
CAS
Google Scholar
Koski, K.J., Cui, Y.: The new skinny in two-dimensional nanomaterials. ACS Nano 7, 3739–3743 (2013)
CAS
Google Scholar
Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S.: Fluorographene: a two-dimensional counterpart of Teflon. Small 6, 2877–2884 (2010)
CAS
Google Scholar
Cheng, S.-H., Zou, K., Okino, F., Gutierrez, H.R., Gupta, A., Shen, N., Eklund, P., Sofo, J., Zhu, J.: Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81, 205435 (2010)
Google Scholar
Tang, S., Zhang, S.: Structural and electronic properties of hybrid fluorographene–graphene nanoribbons: Insight from first-principles calculations. J. Phys. Chem. C 115, 16644–16651 (2011)
CAS
Google Scholar
Karlický, F., Otyepka, M.: Band gaps and optical spectra from single-and double-layer fluorographene to graphite fluoride: many-body effects and excitonic states. Ann. Phys. 526, 408–414 (2014)
Google Scholar
Ivanovskaya, V.V., Zobelli, A., Gloter, A., Brun, N., Serin, V., Colliex, C.: Ab initio study of bilateral doping within the MoS 2-NbS 2 system. Phys. Rev. B 78, 134104 (2008)
Google Scholar
Li, W., Carrete, J., Mingo, N.: Thermal conductivity and phonon linewidths of monolayer MoS2 from first principles. Appl. Phys. Lett. 103, 253103 (2013)
Google Scholar
Kumar, A., Ahluwalia, P.: Electronic structure of transition metal dichalcogenides monolayers 1H-MX 2 (M= Mo, W; X= S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur. Phys. J. B 85, 186 (2012)
Google Scholar
Ding, Y., Wang, Y., Ni, J., Shi, L., Shi, S., Tang, W.: First principles study of structural, vibrational and electronic properties of graphene-like MX2 (M= Mo, Nb, W, Ta; X= S, Se, Te) monolayers. Phys. B 406, 2254–2260 (2011)
CAS
Google Scholar
Karunadasa, H.I., Montalvo, E., Sun, Y., Majda, M., Long, J.R., Chang, C.J.: A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science 335, 698–702 (2012)
CAS
Google Scholar
Buck, V.: Lattice parameters of sputtered MoS2 films. Thin Solid Films 198, 157–167 (1991)
CAS
Google Scholar
Cordero, B., Gómez, V., Platero-Prats, A.E., Revés, M., Echeverría, J., Cremades, E., Barragán, F., Alvarez, S.: Covalent radii revisited. Dalton Trans. 21, 2832–2838 (2008)
Google Scholar
Amin, B., Singh, N., Schwingenschlögl, U.: Heterostructures of transition metal dichalcogenides. Phys. Rev. B 92, 075439 (2015)
Google Scholar
Ramasubramaniam, A.: Large excitonic effects in monolayers of molybdenum and tungsten dichalcogenides. Phys. Rev. B 86, 115409 (2012)
Google Scholar
Kumar, A., Ahluwalia, P.: Effect of quantum confinement on electronic and dielectric properties of niobium dichalcogenides NbX2 (X= S, Se, Te). J. Alloys Compd. 550, 283–291 (2013)
CAS
Google Scholar
Dawson, W., Bullett, D.: Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C 20, 6159 (1987)
CAS
Google Scholar
Shafique, A., Shin, Y.-H.: Strain engineering of phonon thermal transport properties in monolayer 2H-MoTe 2. Phys. Chem. Chem. Phys. 19, 32072–32078 (2017)
CAS
Google Scholar
Kalikhman, V., Umanskiĭ, Y.S.: Transition-metal chalcogenides with layer structures and features of the filling of their Brillouin zones. Soviet Physics Uspekhi 15, 728 (1973)
Google Scholar
Ma, Y., Kuc, A., Jing, Y., Philipsen, P., Heine, T.: Two-dimensional haeckelite NbS2: a diamagnetic high-mobility semiconductor with Nb4+ Ions. Angew. Chem. Int. Ed. 56, 10214–10218 (2017)
CAS
Google Scholar
Xu, Y., Liu, X., Guo, W.: Tensile strain induced switching of magnetic states in NbSe 2 and NbS 2 single layers. Nanoscale 6, 12929–12933 (2014)
CAS
Google Scholar
Bucko, T., Hafner, J.R., Lebegue, S., Angyán, J.G.: Improved description of the structure of molecular and layered crystals: ab initio DFT calculations with van der Waals corrections. J. Phys. Chem. A 114, 11814–11824 (2010)
CAS
Google Scholar
Shi, H., Pan, H., Zhang, Y.-W., Yakobson, B.I.: Quasiparticle band structures and optical properties of strained monolayer MoS 2 and WS 2. Phys. Rev. B 87, 155304 (2013)
Google Scholar
Ataca, C., Topsakal, M., Akturk, E., Ciraci, S.: A comparative study of lattice dynamics of three-and two-dimensional MoS2. J. Phys. Chem. C 115, 16354–16361 (2011)
CAS
Google Scholar
Ramakrishna Matte, H., Gomathi, A., Manna, A.K., Late, D.J., Datta, R., Pati, S.K., Rao, C.: MoS2 and WS2 analogues of graphene. Angew. Chem. Int. Ed. 49, 4059–4062 (2010)
Google Scholar
Amin, B., Kaloni, T.P., Schwingenschlögl, U.: Strain engineering of WS 2, WSe 2, and WTe 2. RSC Adv. 4, 34561–34565 (2014)
CAS
Google Scholar
Zhu, B., Chen, X., Cui, X.: Exciton binding energy of monolayer WS 2. Sci. Rep. 5, 9218 (2015)
Google Scholar
Gu, X., Yang, R.: Phonon transport in single-layer transition metal dichalcogenides: a first-principles study. Appl. Phys. Lett. 105, 131903 (2014)
Google Scholar
Akinwande, D., Petrone, N., Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014)
CAS
Google Scholar
Jana, M.K., Singh, A., Late, D.J., Rajamathi, C.R., Biswas, K., Felser, C., Waghmare, U.V., Rao, C.: A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2. J. Phys. 27, 285401 (2015)
Google Scholar
Inoue, M., Negishi, H.: Interlayer spacing of 3D transition-metal intercalates of 1T-cadmium iodide-type titanium disulfide (TiS2). J. Phys. Chem. 90, 235–238 (1986)
CAS
Google Scholar
Reshak, A.H., Auluck, S.: Electronic and optical properties of the 1 T phases of TiS 2, TiSe 2, and TiTe 2. Phys. Rev. B 68, 245113 (2003)
Google Scholar
Fang, C., De Groot, R., Haas, C.: Bulk and surface electronic structure of 1 T− TiS 2 and 1 T− TiSe 2. Phys. Rev. B 56, 4455 (1997)
CAS
Google Scholar
Wan, C., Gu, X., Dang, F., Itoh, T., Wang, Y., Sasaki, H., Kondo, M., Koga, K., Yabuki, K., Snyder, G.J.: Flexible n-type thermoelectric materials by organic intercalation of layered transition metal dichalcogenide TiS 2. Nat. Mater. 14, 622 (2015)
CAS
Google Scholar
Goli, P., Khan, J., Wickramaratne, D., Lake, R.K., Balandin, A.A.: Charge density waves in exfoliated films of van der Waals materials: evolution of Raman spectrum in TiSe2. Nano Lett. 12, 5941–5945 (2012)
CAS
Google Scholar
Sugawara, K., Nakata, Y., Shimizu, R., Han, P., Hitosugi, T., Sato, T., Takahashi, T.: Unconventional charge-density-wave transition in monolayer 1 T-TiSe2. ACS Nano 10, 1341–1345 (2015)
Google Scholar