Advertisement

Tribology Letters

, 68:21 | Cite as

Tribological Behaviors of an Ultrahigh Strength Cu–15Ni–8Sn–0.2Y Alloy Sliding Against TC6 Titanium Alloy in Deionized Water and Seawater

  • Jinjuan Cheng
  • Xueping GanEmail author
  • Qian LeiEmail author
  • Mincong Mao
  • Zhou Li
  • Kechao Zhou
Original Paper

Abstract

Tribological behaviors of an ultrahigh strength Cu–15Ni–8Sn–0.2Y alloy sliding against TC6 titanium alloy in deionized water and seawater under various normal loads and sliding speeds were evaluated. The friction coefficient and wear rate of the studied alloy in deionized water were higher than those in seawater. Seawater played cooling, lubricating, and corrosive roles during the friction process. A friction model for calculating ploughing component was established, which could explain the influence mechanism of the normal load on the friction coefficient and wear rate. Chloride ions easily penetrated the passive film and damaged it due to the wear, causing increased corrosion and corrosive products. The corrosive products such as Mg(OH)2 and CaCO3 played important roles in reducing friction and wear.

Graphical abstract

Keywords

Copper alloy Seawater Friction Wear 

Notes

Acknowledgements

The authors would like to express their gratitude for the financial support provided by the national key research and development program of China (Grant No. 2017YFB0306105, 2018YFE0306100).

References

  1. 1.
    Pang, J.C., Li, S.X., Zhang, Z.F.: High-cycle fatigue and fracture behaviours of Cu-Be alloy with a wide strength range. Fatigue Fract. Eng. Mater. Struct. 36, 168–176 (2013)CrossRefGoogle Scholar
  2. 2.
    Watanabe, C., Sakai, T., Monzen, R.: Misfit strains of precipitated phases and dimensional changes in Cu-Be alloys. Philos. Mag. 88, 1401–1410 (2008)CrossRefGoogle Scholar
  3. 3.
    Tang, Y.C., Kang, Y.L., Yue, L.J., Jiao, X.L.: Precipitation behavior of Cu-1.9Be-0.3Ni-0.15Co alloy during aging. Acta Metall. Sin. 28, 307–315 (2015)CrossRefGoogle Scholar
  4. 4.
    Shankar, K.V., Sellamuthu, R.: Determination on the effect of tin content on microstructure, hardness, optimum aging temperature and aging time for spinodal bronze alloys cast in metal mold. Int. J. Metalcast. 11, 189–194 (2016)CrossRefGoogle Scholar
  5. 5.
    Zhang, S.Z., Gan, X.P., Cheng, J.J., Jiang, Y.X., Li, Z., Zhou, K.C.: Effect of applied load on transition behavior of wear mechanism in Cu-15Ni-8Sn alloy under oil lubrication. J. Cent. South Univ. 24, 1754–1761 (2017)CrossRefGoogle Scholar
  6. 6.
    Plewes, J.T.: High-strength Cu-Ni-Sn alloys by thermomechanical processing. Metall. Trans A 6A, 537–544 (1975)CrossRefGoogle Scholar
  7. 7.
    Ilangovan, S., Sreejith, J., Manideep, M., Harish, S.: An experimental investigation of Cu-Ni-Sn alloy on microstructure, hardness and wear parameters optimization using DOE. Tribol. Ind. 40, 156–163 (2018)CrossRefGoogle Scholar
  8. 8.
    Virtanen, P., Tiainen, T., Lepistö, T.: Precipitation at faceting grain boundaries of Cu-Ni-Sn-alloys. Mater. Sci. Eng. A 251, 269–275 (1998)CrossRefGoogle Scholar
  9. 9.
    Christofidou, K.A., Robinson, K.J., Mignanelli, P.M., Pickering, E.J., Jones, N.G., Stone, H.J.: The effect of heat treatment on precipitation in the Cu-Ni-Al alloy Hiduron 130. Mater. Sci. Eng. A 692, 192–198 (2017)CrossRefGoogle Scholar
  10. 10.
    Shen, L., Li, Z., Zhang, Z., Dong, Q., Xiao, Z., Lei, Q., et al.: Effects of silicon and thermo-mechanical process on microstructure and properties of Cu-10Ni-3Al-0.8Si alloy. Mater. Des. 62, 265–270 (2014)CrossRefGoogle Scholar
  11. 11.
    Shen, L., Li, Z., Zhao, Y., Wang, Y., Dong, Q., Wang, M.: Phase transformation behavior of Cu-10Ni-3Al-0.8Si alloy. Mater. Chem. Phys. 173, 421–428 (2016)CrossRefGoogle Scholar
  12. 12.
    Singh, J.B., Wen, J.G., Bellon, P.: Nanoscale characterization of the transfer layer formed during dry sliding of Cu-15wt.%Ni-8wt.%Sn bronze alloy. Acta Mater. 56, 3053–3064 (2008)CrossRefGoogle Scholar
  13. 13.
    Xiao, J.K., Zhang, W., Liu, L.M., Gan, X.P., Zhou, K.C., Zhang, C.: Microstructure and tribological properties of plasma sprayed Cu-15Ni-8Sn coatings. Surf. Coat. Technol. 337, 159–167 (2018)CrossRefGoogle Scholar
  14. 14.
    Zhu, Y.D., Yan, M.F., Zhang, Y.X., Zhang, C.S.: First-principles investigation of structural, mechanical and electronic properties for Cu-Ti intermetallics. Comput. Mater. Sci. 123, 70–78 (2016)CrossRefGoogle Scholar
  15. 15.
    Wei, H., Cui, Y., Cui, H., Wei, Y., Hou, L.: Effects of multiple trace alloying elements on the microstructure and properties of Cu-4 wt% Ti alloys. Mater. Sci. Eng. A 707, 392–398 (2017)CrossRefGoogle Scholar
  16. 16.
    Rhu, J.C., Kim, S.S.: Mechanical properties of Cu-6Ni-2Mn-2Sn-xAl alloys. Scr. Mater. 42, 83–89 (2000)CrossRefGoogle Scholar
  17. 17.
    Xie, W.B., Wang, Q.S., Mi, X.J., Xie, G.L., Liu, D.M., Gao, X.C., Li, Y.: Microstructure evolution and properties of Cu-20Ni-20Mn alloy during aging process. Trans. Nonferrous Met. Soc. China 25, 3247–3251 (2015)CrossRefGoogle Scholar
  18. 18.
    Xie, G.L., Wang, Q.S., Guo, Q.M., Liu, D.M., Xie, W.B., Mi, X.J., Xiong, B.Q.: Precipitation process and mechanical properties of an elastic Cu-Ni-Mn Alloy. Mater. Sci. Forum 817, 577–581 (2015)CrossRefGoogle Scholar
  19. 19.
    Ilangovan, S., Sellamuthu, R.: An investigation of the effect of Ni content and hardness on the wear behaviour of sand cast Cu-Ni-Sn alloys. Int. J. Microstruct. Mater. Prop. 7, 316–328 (2012)Google Scholar
  20. 20.
    Zhao, J.C., Notis, M.R.: Spinodal decomposition, ordering transformation, and discontinuous precipitation in a Cu-15Ni-8Sn alloy. Acta Mater. 46, 4203–4218 (1998)CrossRefGoogle Scholar
  21. 21.
    Ouyang, Y., Gan, X.P., Zhang, S.Z., Li, Z., Zhou, K.C., Jiang, Y.X., Zhang, X.W.: Age-hardening behavior and microstructure of Cu-15Ni-8Sn-0.3Nb alloy prepared by powder metallurgy and hot extrusion. Tran. Nonferrous Met. Soc. China 27, 1947–1955 (2017)CrossRefGoogle Scholar
  22. 22.
    Zhao, C., Zhang, W.W., Wang, Z., Li, D.X., Luo, Z.Q., Yang, C., Zhang, D.T.: Improving the mechanical properties of Cu-15Ni-8Sn alloys by addition of titanium. Materials 10(9), 1038–1049 (2017)CrossRefGoogle Scholar
  23. 23.
    Peng, G., Gan, X.: Re-aging behavior of Cu-15Ni-8Sn alloy pretreated by dynamic strain aging. Mater. Sci. Eng. A 752, 18–23 (2019)CrossRefGoogle Scholar
  24. 24.
    Fang, S.F., Wang, M.P., Wang, Y.H., Qi, E.H., Li, Z.: Evolutionary artificial neural network approach for predicting properties of Cu-15Ni-8Sn-0.4Si alloy. Trans. Nonferrous Met. Soc. China 18, 1223–1238 (2008)CrossRefGoogle Scholar
  25. 25.
    Zhang, Y., Xiao, Z., Zhao, Y.Y., Li, Z., Xing, Y., Zhou, K.C.: Effect of thermo-mechanical treatments on corrosion behavior of Cu-15Ni-8Sn alloy in 3.5 wt% NaCl solution. Mater. Chem. Phys. 199, 54–66 (2017)CrossRefGoogle Scholar
  26. 26.
    Johnsen, R., Lange, T., Stenerud, G., Olsen, J.S.: Environmentally assisted degradation of spinodal copper alloy C72900. Corros. Sci. 142, 45–55 (2018)CrossRefGoogle Scholar
  27. 27.
    Singh, J.B., Cai, W., Bellon, P.: Dry sliding of Cu-15wt%Ni-8wt%Sn bronze: wear behaviour and microstructures. Wear 263, 830–841 (2007)CrossRefGoogle Scholar
  28. 28.
    Zhang, S.Z., Jiang, B.H., Ding, W.J.: Dry sliding wear of Cu-15Ni-8Sn alloy. Tribol. Int. 43, 64–68 (2010)CrossRefGoogle Scholar
  29. 29.
    Zhang, S.Z., Jiang, B.H., Ding, W.J.: Wear of Cu–15Ni–8Sn spinodal alloy. Wear 264, 199–203 (2008)CrossRefGoogle Scholar
  30. 30.
    Ouyang, Y., Gan, X.P., Li, Z., Zhou, K.C., Zhang, S.Z., Jiang, Y.X., Zhang, X.W.: Microstructure evolution of a Cu-15Ni-8Sn-0.8Nb alloy during prior deformation and aging treatment. Mater. Sci. Eng. A 704, 128–137 (2017)CrossRefGoogle Scholar
  31. 31.
    Kondo, S.I., Nakashima, H., Morimura, T.: Spinodal decomposition in a melt-spun Cu-15Ni-8Sn alloy. Physica B Condens. Matter 560, 244–254 (2019)CrossRefGoogle Scholar
  32. 32.
    Caris, J., Li, D.Q., Stephens, J.J., Lewandowski, J.J.: Microstructural effects on tension behavior of Cu-15Ni-8Sn sheet. Mater. Sci. Eng. A 527, 769–781 (2010)CrossRefGoogle Scholar
  33. 33.
    Jin, K.J., Qiao, Z.H., Zhu, S.Y., Cheng, J., Yin, B., Yang, J.: Tribological properties of bronze-Cr-Ag alloy in seawater, NaCl solution and deionized water. Tribol. Int. 98, 1–9 (2016)CrossRefGoogle Scholar
  34. 34.
    Wang, Y., Zhang, L., Xiao, J.K., Chen, W., Feng, C.F., Gan, X.P., Zhou, K.C.: The tribo-corrosion behavior of Cu-9wt% Ni-6wt% Sn alloy. Tribol. Int. 94, 260–268 (2016)CrossRefGoogle Scholar
  35. 35.
    Zhang, B.B., Wang, J.Z., Yan, F.Y.: Load-dependent tribocorrosion behavior of nickel-aluminium bronze in artificial seawater. Corros. Sci. 131, 252–263 (2018)CrossRefGoogle Scholar
  36. 36.
    Mao, X.Y., Li, D.Y., Fang, F., Tan, R.S., Jiang, J.Q.: Application of a simple surface nanocrystallization process to a Cu-30Ni alloy for enhanced resistances to wear and corrosive wear. Wear 271, 1224–1230 (2011)CrossRefGoogle Scholar
  37. 37.
    Cui, G.J., Bi, Q.L., Zhu, S.Y., Yang, J., Liu, W.M.: Tribological behavior of Cu-6Sn-6Zn-3Pb under sea water, distilled water and fry-sliding conditions. Tribol. Int. 55, 126–134 (2012)CrossRefGoogle Scholar
  38. 38.
    Li, M.Q., Xiong, A.M., Huang, W.C., Wang, H.R., Su, S.B., Shen, L.C.: Microstructural evolution and modelling of the hot compression of a TC6 titanium alloy. Mater. Charact. 49, 203–209 (2003)CrossRefGoogle Scholar
  39. 39.
    Huttunen-Saarivirta, E., Isotahdon, E., Metsäjoki, J., Salminen, T., Ronkainen, H., Carpén, L.: Behavior of leaded tin bronze in simulated seawater in the absence and presence of tribological contact with alumina counterbody: corrosion, wear and tribocorrosion. Tirol. Int. 129, 257–271 (2019)Google Scholar
  40. 40.
    Wen, S.Z., Huang, P.: Principles of Tribology, 2nd edn. Tsinghua University Press, Beijing (2002)Google Scholar
  41. 41.
    Ding, H., Dai, Z., Zhou, F., Zhou, G.: Sliding friction and wear behavior of TC11 in aqueous condition. Wear 263, 117–124 (2007)CrossRefGoogle Scholar
  42. 42.
    Gong, T.M., Yao, P.P., Xiao, Y.L., Fan, K.Y., Tan, H.Q., Zhang, Z.Y., Zhao, L., Zhou, H.B., Deng, M.W.: Wear map for copper-based friction clutch material under oil lubrication. Wear 328–329, 270–276 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina
  2. 2.School of Materials Science and EngineeringCentral South UniversityChangshaChina

Personalised recommendations