Correlation Between the Adsorption and the Nanotribological Performance of Fatty Acid-Based Organic Friction Modifiers on Stainless Steel
- 53 Downloads
Abstract
Surface adsorption of amphiphilic molecules is a vital mechanism of boundary lubrication on stainless steel surfaces. The self-assembly of four fatty acid-based organic friction modifiers in two alkane solvents and their adsorption onto stainless steel surfaces was investigated using Dynamic Light Scattering and Quartz Crystal Balance with Dissipation, respectively. These properties were related to the friction force between a sharp tip and the steel surface measured using Lateral Force Microscopy. The molecular structures of the organic friction modifiers were chosen in order to study the effects of unsaturation and number of alkyl chains as well as the composition of the polar head groups on their assembly in solution, adsorption, and nanotribological behavior. Sorbitan monooleate and dioleate adsorb as monolayers with their alkyl chains either in the upright or tilted configuration, depending on their concentration. If large supramolecular structures were present in the solvent, i.e., for sorbitan monolaurate and glycerol monooleate, micelle adsorption and rearrangement on the surface and multilayer formation took place, respectively. A correlation between the adsorption rate constant and the coefficient of friction of the organic friction modifiers was revealed in these studies, with the coefficient of friction decreasing with an increase in the adsorption rate.
Graphic Abstract
Keywords
Carboxylic acid derivative Organic friction modifier Boundary lubrication Quartz crystal microbalance Atomic force microscopyNotes
Acknowledgements
This project was supported by TOTAL MS under TOTAL-UIUC collaboration (Research agreement U15-012 PC15-039). The authors gratefully acknowledge Benoît Thiébaut and Sophie Loehle at Total M&S, Solaize Research Center (CRES), France for the useful discussions.
Supplementary material
References
- 1.Braithwaite, E.R., Greene, A.B.: Critical analysis of performance of molybdenum compounds in motor vehicles. Wear 46(2), 405–432 (1978). https://doi.org/10.1016/0043-1648(78)90044-3 CrossRefGoogle Scholar
- 2.Allen, H.S.: Molecular layers in lubrication. Discussion on lubrication. Proc. Phys. Soc. Lond. 32, 1–34 (1919).CrossRefGoogle Scholar
- 3.Spikes, H.: Friction modifier additives. Tribol. Lett. 60(1), 5 (2015). https://doi.org/10.1007/s11249-015-0589-z CrossRefGoogle Scholar
- 4.Schwartz, D.K.: Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001). https://doi.org/10.1146/annurev.physchem.52.1.107 CrossRefGoogle Scholar
- 5.Hardy, W.B.: Boundary lubrication—the paraffin series. Proc. R. Soc. Lond. A 100(707), 550–574 (1922). https://doi.org/10.1098/rspa.1922.0017 CrossRefGoogle Scholar
- 6.Jahanmir, S., Beltzer, M.: An adsorption model for friction in boundary lubrication. ASLE Trans. 29, 423–430 (1986)CrossRefGoogle Scholar
- 7.Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1971)Google Scholar
- 8.Cameron, A., Day, R.S., Sharma, J.P., Smith, A.J.: Studies in interaction of additive and base stock. Asle Trans. 19(3), 195–200 (1976)CrossRefGoogle Scholar
- 9.Jahanmir, S.: Chain-length effects in boundary lubrication. Wear 102(4), 331–349 (1985). https://doi.org/10.1016/0043-1648(85)90176-0 CrossRefGoogle Scholar
- 10.Askwith, T.C., Cameron, A., Crouch, R.F.: Chain length of additives in relation to lubricants in thin film and boundary lubrication. Proc. R. Soc. Lond. A 291(1427), 500–519 (1966). https://doi.org/10.1098/rspa.1966.0111 CrossRefGoogle Scholar
- 11.Wells, H.M., Southcombe, J.E.: The theory and practice of lubrication: the "Germ" process. J. Soc. Chem. Lond. 39, 51T–60T (1920)CrossRefGoogle Scholar
- 12.Daniel, S.G.: The adsorption on metal surfaces of long chain polar compounds from hydrocarbon solutions. Trans. Faraday Soc. 47(12), 1345–1359 (1951). https://doi.org/10.1039/tf9514701345 CrossRefGoogle Scholar
- 13.Greenhill, E.B.: The adsorption of long chain polar compounds from solution on metal surfaces. Trans. Faraday Soc. 45(7), 625–631 (1949). https://doi.org/10.1039/tf9494500625 CrossRefGoogle Scholar
- 14.Ratoi, M., Anghel, V., Bovington, C., Spikes, H.A.: Mechanisms of oiliness additives. Tribol. Int. 33(3–4), 241–247 (2000). https://doi.org/10.1016/S0301-679x(00)00037-2 CrossRefGoogle Scholar
- 15.Block, A., Simms, B.B.: Desorption and exchange of adsorbed octadecylamine and stearic acid on steel and glass. J. Colloid Interface Sci. 25(4), 514–518 (1967). https://doi.org/10.1016/0021-9797(67)90062-8 CrossRefGoogle Scholar
- 16.Cook, E.L., Hackerman, N.: Adsorption of polar organic compounds on steel. J. Phys. Colloid Chem. 55(4), 549–557 (1951). https://doi.org/10.1021/j150487a010 CrossRefGoogle Scholar
- 17.Simic, R., Kalin, M.: Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments. Appl. Surf. Sci. 283, 460–470 (2013). https://doi.org/10.1016/j.apsusc.2013.06.131 CrossRefGoogle Scholar
- 18.Loehle, S., Matta, C., Minfray, C., Le Mogne, T., Iovine, R., Obara, Y., Miyamoto, A., Martin, J.M.: Mixed lubrication of steel by C18 fatty acids revisited. Part I: toward the formation of carboxylate. Tribol. Int. 82, 218–227 (2015). https://doi.org/10.1016/j.triboint.2014.10.020 CrossRefGoogle Scholar
- 19.Sahoo, R.R., Biswas, S.K.: Frictional response of fatty acids on steel. J. Colloid Interface Sci. 333(2), 707–718 (2009). https://doi.org/10.1016/j.jcis.2009.01.046 CrossRefGoogle Scholar
- 20.Allara, D.L., Nuzzo, R.G.: Spontaneously organized molecular assemblies.1. Formation, dynamics, and physical-properties of normal-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir 1(1), 45–52 (1985). https://doi.org/10.1021/la00061a007 CrossRefGoogle Scholar
- 21.Hirayama, T., Kawamura, R., Fujino, K., Matsuoka, T., Komiya, H., Onishi, H.: Cross-sectional imaging of boundary lubrication layer formed by fatty acid by means of frequency-modulation atomic force microscopy. Langmuir 33(40), 10492–10500 (2017). https://doi.org/10.1021/acs.langmuir.7b02528 CrossRefGoogle Scholar
- 22.Bowden, F.P., Leben, L.: The friction of lubricated metals. Philos. Trans. R. Soc. Lond. A 239(799), 1–27 (1940). https://doi.org/10.1098/rsta.1940.0007 CrossRefGoogle Scholar
- 23.Loehle, S.: Understanding of adsorption mechanism and tribological behaviours of C18 fatty acids on iron-based surfaces: a molecular simulation approach. PhD thesis, Ecole Centrale de Lyon (2014)Google Scholar
- 24.Albertson, C.E.: The mechanisms of anti-squawk additive behavior in automatic transmission fluids. ASLE Trans. 6, 300–315 (1963)CrossRefGoogle Scholar
- 25.Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM; saturated and mono-unsaturated carboxylic acids. Tribol. Lett. 57(2), 18 (2015)CrossRefGoogle Scholar
- 26.Campen, S.: Fundamentals of organic friction modifier behaviour. PhD thesis, Imperial College (2012)Google Scholar
- 27.Jahanmir, S., Beltzer, M.: Effect of additive molecular-structure on friction coefficient and adsorption. J. Tribol. Trans. Asme 108(1), 109–116 (1986). https://doi.org/10.1115/1.3261129 CrossRefGoogle Scholar
- 28.Prutton, C.F., Frey, D.R., Turnbull, D., Dlouhy, G.: Corrosion of metals by organic acids in hydrocarbon solvents. Ind. Eng. Chem. 37(1), 90–100 (1945). https://doi.org/10.1021/ie50421a020 CrossRefGoogle Scholar
- 29.Schick, J.W., Kaminski, J.M: Lubricant composition for reduction of fuel consumption in internal combustion engines. United States of America Patent 4304678 (1978)Google Scholar
- 30.Evans, K.O., Biresaw, G.: Quartz crystal microbalance investigation of the structure of adsorbed soybean oil and methyl oleate onto steel surface. Thin Solid Films 519(2), 900–905 (2010). https://doi.org/10.1016/j.tsf.2010.08.134 CrossRefGoogle Scholar
- 31.Moon, W.-S., Lee, J.-H.: Frictional characteristics of the lubricants formulated with non-conventional base stocks. J. Korean Soc. Tribol. Lubr. Eng. 11(5), 144–149 (1995)Google Scholar
- 32.Nalam, P.C., Pham, A., Castillo, R.V., Espinosa-Marzal, R.M.: Adsorption behavior and nanotribology of amine-based friction modifiers on steel surfaces. J. Phys. Chem. C 123(22), 13672–13680 (2019). https://doi.org/10.1021/acs.jpcc.9b02097 CrossRefGoogle Scholar
- 33.Butt, H.J., Jaschke, M.: Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6(1), 1–7 (1995). https://doi.org/10.1088/0957-4484/6/1/001 CrossRefGoogle Scholar
- 34.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). https://doi.org/10.1557/Jmr.1992.1564 CrossRefGoogle Scholar
- 35.Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67(9), 3298–3306 (1996). https://doi.org/10.1063/1.1147411 CrossRefGoogle Scholar
- 36.Custer, G.S., Xu, H., Matysiak, S., Das, P.: How hydrophobic hydration destabilizes surfactant micelles at low temperature: a coarse-grained simulation study. Langmuir 34(42), 12590–12599 (2018). https://doi.org/10.1021/acs.langmuir.8b01994 CrossRefGoogle Scholar
- 37.Dixon, M.C.: Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19(3), 151–158 (2008)Google Scholar
- 38.Keller, C.A., Kasemo, B.: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75(3), 1397–1402 (1998). https://doi.org/10.1016/S0006-3495(98)74057-3 CrossRefGoogle Scholar
- 39.Ohlsson, P.A., Tjarnhage, T., Herbai, E., Lofas, S., Puu, G.: Liposome and proteoliposome fusion onto solid substrates, studied using atomic-force microscopy, quartz-crystal microbalance and surface-plasmon resonance—biological-activities of incorporated components. Bioelectrochem. Bioenerg. 38(1), 137–148 (1995). https://doi.org/10.1016/0302-4598(95)01821-U CrossRefGoogle Scholar
- 40.SK Lubricants. (Safety Data Sheet: Yubase 4 plus.). https://www.yubase.com/eng/product/pr_certifications_01msds.asp. Accessed 29 Nov 2019
- 41.Sirbu, F., Dragoescu, D., Shchamialiou, A., Khasanshin, T.: Densities, speeds of sound, refractive indices, viscosities and their related thermodynamic properties for n-hexadecane plus two aromatic hydrocarbons binary mixtures at temperatures from 298.15 to 318.15 K. J. Chem. Thermodyn. 128, 383–393 (2019). https://doi.org/10.1016/j.jct.2018.08.036 CrossRefGoogle Scholar
- 42.Rodahl, M., Hook, F., Fredriksson, C., Keller, C.A., Krozer, A., Brzezinski, P., Voinova, M., Kasemo, B.: Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107(107), 229–246 (1997). https://doi.org/10.1039/a703137h CrossRefGoogle Scholar
- 43.Sauerbrey, G.: Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Zeitschrift Fur Physik 155(2), 206–222 (1959). https://doi.org/10.1007/Bf01337937 CrossRefGoogle Scholar
- 44.Voinova, M.V., Rodahl, M., Jonson, M., Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Physica Scripta 59(5), 391–396 (1999). https://doi.org/10.1238/Physica.Regular.059a00391 CrossRefGoogle Scholar
- 45.Konishi, M., Washizu, H.: Understanding the effect of the base oil on the physical adsorption process of organic additives using molecular using molecular dynamics. Tribol. Int. (2019). https://doi.org/10.1016/j.triboint.2019.01.027 CrossRefGoogle Scholar
- 46.Wheeler, D.H., Potente, D., Wittcoff, H.: Adsorption of dimer, trimer, stearic, oleic, linoleic, nonanoic and azelaic acids on ferric oxide. J. Am. Oil Chem. Soc. 48(3), 125–128 (1971). https://doi.org/10.1007/Bf02545734 CrossRefGoogle Scholar
- 47.Liu, Y., Shen, L.: From Langmuir kinetics to first- and second-order rate equations for adsorption. Langmuir 24(20), 11625–11630 (2008). https://doi.org/10.1021/la801839b CrossRefGoogle Scholar
- 48.Lundgren, S.M., Persson, K., Mueller, G., Kronberg, B., Clarke, J., Chtaib, M., Claesson, P.M.: Unsaturated fatty acids in alkane solution: adsorption to steel surfaces. Langmuir 23(21), 10598–10602 (2007). https://doi.org/10.1021/la700909v CrossRefGoogle Scholar
- 49.Ruths, M., Israelachvili, J.N.: Surface forces and nanorheology of molecularly thin films. Nanotribol. Nanomech. 2, 107–202 (2011). https://doi.org/10.1007/978-3-642-15263-4_13 CrossRefGoogle Scholar
- 50.Campen, S., Green, J., Lamb, G., Atkinson, D., Spikes, H.: On the increase in boundary friction with sliding speed. Tribol. Lett. 48(2), 237–248 (2012). https://doi.org/10.1007/s11249-012-0019-4 CrossRefGoogle Scholar
- 51.Lundgren, S.M.: Ruths, M, Danerlov, K: Effects of unsaturation on film structure and friction of fatty acids in a model. J. Colloid Interface Sci. 326, 530–536 (2008)CrossRefGoogle Scholar
- 52.Ruths, M., Lundgren, S., Danerlov, K., Persson, K.: Friction of fatty acids in nanometer-sized contacts of different adhesive strength. Langmuir 24(4), 1509–1516 (2008). https://doi.org/10.1021/la7023633 CrossRefGoogle Scholar
- 53.Loehle, S., Matta, C., Minfray, C., Le Mogne, T., Iovine, R., Obara, Y., Miyamoto, A., Martin, J.M.: Mixed lubrication of steel by C18 fatty acids revisited. Part II: influence of some key parameters. Tribol. Int. 94, 207–216 (2016). https://doi.org/10.1016/j.triboint.2015.08.036 CrossRefGoogle Scholar