Tribology Letters

, 68:11 | Cite as

Correlation Between the Adsorption and the Nanotribological Performance of Fatty Acid-Based Organic Friction Modifiers on Stainless Steel

  • Zita Zachariah
  • Prathima C. Nalam
  • Amogha Ravindra
  • Archana Raju
  • Anupama Mohanlal
  • Kaiyu Wang
  • R. Veronica Castillo
  • Rosa M. Espinosa-MarzalEmail author
Original Paper


Surface adsorption of amphiphilic molecules is a vital mechanism of boundary lubrication on stainless steel surfaces. The self-assembly of four fatty acid-based organic friction modifiers in two alkane solvents and their adsorption onto stainless steel surfaces was investigated using Dynamic Light Scattering and Quartz Crystal Balance with Dissipation, respectively. These properties were related to the friction force between a sharp tip and the steel surface measured using Lateral Force Microscopy. The molecular structures of the organic friction modifiers were chosen in order to study the effects of unsaturation and number of alkyl chains as well as the composition of the polar head groups on their assembly in solution, adsorption, and nanotribological behavior. Sorbitan monooleate and dioleate adsorb as monolayers with their alkyl chains either in the upright or tilted configuration, depending on their concentration. If large supramolecular structures were present in the solvent, i.e., for sorbitan monolaurate and glycerol monooleate, micelle adsorption and rearrangement on the surface and multilayer formation took place, respectively. A correlation between the adsorption rate constant and the coefficient of friction of the organic friction modifiers was revealed in these studies, with the coefficient of friction decreasing with an increase in the adsorption rate.

Graphic Abstract


Carboxylic acid derivative Organic friction modifier Boundary lubrication Quartz crystal microbalance Atomic force microscopy 



This project was supported by TOTAL MS under TOTAL-UIUC collaboration (Research agreement U15-012 PC15-039). The authors gratefully acknowledge Benoît Thiébaut and Sophie Loehle at Total M&S, Solaize Research Center (CRES), France for the useful discussions.

Supplementary material

11249_2019_1250_MOESM1_ESM.docx (65.8 mb)
Supplementary file1 (DOCX 67340 kb)


  1. 1.
    Braithwaite, E.R., Greene, A.B.: Critical analysis of performance of molybdenum compounds in motor vehicles. Wear 46(2), 405–432 (1978). CrossRefGoogle Scholar
  2. 2.
    Allen, H.S.: Molecular layers in lubrication. Discussion on lubrication. Proc. Phys. Soc. Lond. 32, 1–34 (1919).CrossRefGoogle Scholar
  3. 3.
    Spikes, H.: Friction modifier additives. Tribol. Lett. 60(1), 5 (2015). CrossRefGoogle Scholar
  4. 4.
    Schwartz, D.K.: Mechanisms and kinetics of self-assembled monolayer formation. Annu. Rev. Phys. Chem. 52, 107–137 (2001). CrossRefGoogle Scholar
  5. 5.
    Hardy, W.B.: Boundary lubrication—the paraffin series. Proc. R. Soc. Lond. A 100(707), 550–574 (1922). CrossRefGoogle Scholar
  6. 6.
    Jahanmir, S., Beltzer, M.: An adsorption model for friction in boundary lubrication. ASLE Trans. 29, 423–430 (1986)CrossRefGoogle Scholar
  7. 7.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1971)Google Scholar
  8. 8.
    Cameron, A., Day, R.S., Sharma, J.P., Smith, A.J.: Studies in interaction of additive and base stock. Asle Trans. 19(3), 195–200 (1976)CrossRefGoogle Scholar
  9. 9.
    Jahanmir, S.: Chain-length effects in boundary lubrication. Wear 102(4), 331–349 (1985). CrossRefGoogle Scholar
  10. 10.
    Askwith, T.C., Cameron, A., Crouch, R.F.: Chain length of additives in relation to lubricants in thin film and boundary lubrication. Proc. R. Soc. Lond. A 291(1427), 500–519 (1966). CrossRefGoogle Scholar
  11. 11.
    Wells, H.M., Southcombe, J.E.: The theory and practice of lubrication: the "Germ" process. J. Soc. Chem. Lond. 39, 51T–60T (1920)CrossRefGoogle Scholar
  12. 12.
    Daniel, S.G.: The adsorption on metal surfaces of long chain polar compounds from hydrocarbon solutions. Trans. Faraday Soc. 47(12), 1345–1359 (1951). CrossRefGoogle Scholar
  13. 13.
    Greenhill, E.B.: The adsorption of long chain polar compounds from solution on metal surfaces. Trans. Faraday Soc. 45(7), 625–631 (1949). CrossRefGoogle Scholar
  14. 14.
    Ratoi, M., Anghel, V., Bovington, C., Spikes, H.A.: Mechanisms of oiliness additives. Tribol. Int. 33(3–4), 241–247 (2000). CrossRefGoogle Scholar
  15. 15.
    Block, A., Simms, B.B.: Desorption and exchange of adsorbed octadecylamine and stearic acid on steel and glass. J. Colloid Interface Sci. 25(4), 514–518 (1967). CrossRefGoogle Scholar
  16. 16.
    Cook, E.L., Hackerman, N.: Adsorption of polar organic compounds on steel. J. Phys. Colloid Chem. 55(4), 549–557 (1951). CrossRefGoogle Scholar
  17. 17.
    Simic, R., Kalin, M.: Adsorption mechanisms for fatty acids on DLC and steel studied by AFM and tribological experiments. Appl. Surf. Sci. 283, 460–470 (2013). CrossRefGoogle Scholar
  18. 18.
    Loehle, S., Matta, C., Minfray, C., Le Mogne, T., Iovine, R., Obara, Y., Miyamoto, A., Martin, J.M.: Mixed lubrication of steel by C18 fatty acids revisited. Part I: toward the formation of carboxylate. Tribol. Int. 82, 218–227 (2015). CrossRefGoogle Scholar
  19. 19.
    Sahoo, R.R., Biswas, S.K.: Frictional response of fatty acids on steel. J. Colloid Interface Sci. 333(2), 707–718 (2009). CrossRefGoogle Scholar
  20. 20.
    Allara, D.L., Nuzzo, R.G.: Spontaneously organized molecular assemblies.1. Formation, dynamics, and physical-properties of normal-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir 1(1), 45–52 (1985). CrossRefGoogle Scholar
  21. 21.
    Hirayama, T., Kawamura, R., Fujino, K., Matsuoka, T., Komiya, H., Onishi, H.: Cross-sectional imaging of boundary lubrication layer formed by fatty acid by means of frequency-modulation atomic force microscopy. Langmuir 33(40), 10492–10500 (2017). CrossRefGoogle Scholar
  22. 22.
    Bowden, F.P., Leben, L.: The friction of lubricated metals. Philos. Trans. R. Soc. Lond. A 239(799), 1–27 (1940). CrossRefGoogle Scholar
  23. 23.
    Loehle, S.: Understanding of adsorption mechanism and tribological behaviours of C18 fatty acids on iron-based surfaces: a molecular simulation approach. PhD thesis, Ecole Centrale de Lyon (2014)Google Scholar
  24. 24.
    Albertson, C.E.: The mechanisms of anti-squawk additive behavior in automatic transmission fluids. ASLE Trans. 6, 300–315 (1963)CrossRefGoogle Scholar
  25. 25.
    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM; saturated and mono-unsaturated carboxylic acids. Tribol. Lett. 57(2), 18 (2015)CrossRefGoogle Scholar
  26. 26.
    Campen, S.: Fundamentals of organic friction modifier behaviour. PhD thesis, Imperial College (2012)Google Scholar
  27. 27.
    Jahanmir, S., Beltzer, M.: Effect of additive molecular-structure on friction coefficient and adsorption. J. Tribol. Trans. Asme 108(1), 109–116 (1986). CrossRefGoogle Scholar
  28. 28.
    Prutton, C.F., Frey, D.R., Turnbull, D., Dlouhy, G.: Corrosion of metals by organic acids in hydrocarbon solvents. Ind. Eng. Chem. 37(1), 90–100 (1945). CrossRefGoogle Scholar
  29. 29.
    Schick, J.W., Kaminski, J.M: Lubricant composition for reduction of fuel consumption in internal combustion engines. United States of America Patent 4304678 (1978)Google Scholar
  30. 30.
    Evans, K.O., Biresaw, G.: Quartz crystal microbalance investigation of the structure of adsorbed soybean oil and methyl oleate onto steel surface. Thin Solid Films 519(2), 900–905 (2010). CrossRefGoogle Scholar
  31. 31.
    Moon, W.-S., Lee, J.-H.: Frictional characteristics of the lubricants formulated with non-conventional base stocks. J. Korean Soc. Tribol. Lubr. Eng. 11(5), 144–149 (1995)Google Scholar
  32. 32.
    Nalam, P.C., Pham, A., Castillo, R.V., Espinosa-Marzal, R.M.: Adsorption behavior and nanotribology of amine-based friction modifiers on steel surfaces. J. Phys. Chem. C 123(22), 13672–13680 (2019). CrossRefGoogle Scholar
  33. 33.
    Butt, H.J., Jaschke, M.: Calculation of thermal noise in atomic-force microscopy. Nanotechnology 6(1), 1–7 (1995). CrossRefGoogle Scholar
  34. 34.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). CrossRefGoogle Scholar
  35. 35.
    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67(9), 3298–3306 (1996). CrossRefGoogle Scholar
  36. 36.
    Custer, G.S., Xu, H., Matysiak, S., Das, P.: How hydrophobic hydration destabilizes surfactant micelles at low temperature: a coarse-grained simulation study. Langmuir 34(42), 12590–12599 (2018). CrossRefGoogle Scholar
  37. 37.
    Dixon, M.C.: Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. J. Biomol. Tech. 19(3), 151–158 (2008)Google Scholar
  38. 38.
    Keller, C.A., Kasemo, B.: Surface specific kinetics of lipid vesicle adsorption measured with a quartz crystal microbalance. Biophys. J. 75(3), 1397–1402 (1998). CrossRefGoogle Scholar
  39. 39.
    Ohlsson, P.A., Tjarnhage, T., Herbai, E., Lofas, S., Puu, G.: Liposome and proteoliposome fusion onto solid substrates, studied using atomic-force microscopy, quartz-crystal microbalance and surface-plasmon resonance—biological-activities of incorporated components. Bioelectrochem. Bioenerg. 38(1), 137–148 (1995). CrossRefGoogle Scholar
  40. 40.
    SK Lubricants. (Safety Data Sheet: Yubase 4 plus.). Accessed 29 Nov 2019
  41. 41.
    Sirbu, F., Dragoescu, D., Shchamialiou, A., Khasanshin, T.: Densities, speeds of sound, refractive indices, viscosities and their related thermodynamic properties for n-hexadecane plus two aromatic hydrocarbons binary mixtures at temperatures from 298.15 to 318.15 K. J. Chem. Thermodyn. 128, 383–393 (2019). CrossRefGoogle Scholar
  42. 42.
    Rodahl, M., Hook, F., Fredriksson, C., Keller, C.A., Krozer, A., Brzezinski, P., Voinova, M., Kasemo, B.: Simultaneous frequency and dissipation factor QCM measurements of biomolecular adsorption and cell adhesion. Faraday Discuss 107(107), 229–246 (1997). CrossRefGoogle Scholar
  43. 43.
    Sauerbrey, G.: Verwendung Von Schwingquarzen Zur Wagung Dunner Schichten Und Zur Mikrowagung. Zeitschrift Fur Physik 155(2), 206–222 (1959). CrossRefGoogle Scholar
  44. 44.
    Voinova, M.V., Rodahl, M., Jonson, M., Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: continuum mechanics approach. Physica Scripta 59(5), 391–396 (1999). CrossRefGoogle Scholar
  45. 45.
    Konishi, M., Washizu, H.: Understanding the effect of the base oil on the physical adsorption process of organic additives using molecular using molecular dynamics. Tribol. Int. (2019). CrossRefGoogle Scholar
  46. 46.
    Wheeler, D.H., Potente, D., Wittcoff, H.: Adsorption of dimer, trimer, stearic, oleic, linoleic, nonanoic and azelaic acids on ferric oxide. J. Am. Oil Chem. Soc. 48(3), 125–128 (1971). CrossRefGoogle Scholar
  47. 47.
    Liu, Y., Shen, L.: From Langmuir kinetics to first- and second-order rate equations for adsorption. Langmuir 24(20), 11625–11630 (2008). CrossRefGoogle Scholar
  48. 48.
    Lundgren, S.M., Persson, K., Mueller, G., Kronberg, B., Clarke, J., Chtaib, M., Claesson, P.M.: Unsaturated fatty acids in alkane solution: adsorption to steel surfaces. Langmuir 23(21), 10598–10602 (2007). CrossRefGoogle Scholar
  49. 49.
    Ruths, M., Israelachvili, J.N.: Surface forces and nanorheology of molecularly thin films. Nanotribol. Nanomech. 2, 107–202 (2011). CrossRefGoogle Scholar
  50. 50.
    Campen, S., Green, J., Lamb, G., Atkinson, D., Spikes, H.: On the increase in boundary friction with sliding speed. Tribol. Lett. 48(2), 237–248 (2012). CrossRefGoogle Scholar
  51. 51.
    Lundgren, S.M.: Ruths, M, Danerlov, K: Effects of unsaturation on film structure and friction of fatty acids in a model. J. Colloid Interface Sci. 326, 530–536 (2008)CrossRefGoogle Scholar
  52. 52.
    Ruths, M., Lundgren, S., Danerlov, K., Persson, K.: Friction of fatty acids in nanometer-sized contacts of different adhesive strength. Langmuir 24(4), 1509–1516 (2008). CrossRefGoogle Scholar
  53. 53.
    Loehle, S., Matta, C., Minfray, C., Le Mogne, T., Iovine, R., Obara, Y., Miyamoto, A., Martin, J.M.: Mixed lubrication of steel by C18 fatty acids revisited. Part II: influence of some key parameters. Tribol. Int. 94, 207–216 (2016). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  2. 2.TOTAL MARKETING SERVICES - Centre de Recherche de Solaize - Chemin du CanalSolaizeFrance
  3. 3.Department of Materials Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA
  4. 4.Max-Planck-Institut für Eisenforschung GmbHDüsseldorfGermany
  5. 5.Department of Materials Design and InnovationUniversity at BuffaloBuffaloUSA

Personalised recommendations