Skip to main content

Tribological Behavior of Film Forming Organosilane/-Siloxane Oil Additives: Film Characterization and Influences on Lubrication

Abstract

Vinyltrimethoxysilane monomer and oligomer film former were investigated as oil additives in terms of their tribological as well as their tribochemical behavior. The additives were dissolved in mineral oil and tested in different tribometers to evaluate the influences on friction, wear, lubricating film thickness and to track the film formation. The obtained reaction films from the friction tests were analyzed upon their morphology and chemical structure. It was found that organosilane/-siloxane molecules can deposit in a multi-layered film architecture, consisting of a polymeric layer on top of a glass-like coating. The glass-like tribofilm is adhesive, while the polymeric layer is weakly cross-linked and viscous. Depending on film structure, friction and wear can be reduced by more than 40%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Michaelis, K., Höhn, B., Hinterstoißer, M.: Influence factors on gearbox power loss. Ind. Lubr. Tribol. 63(1), 46–55 (2011). https://doi.org/10.1108/00368791111101830

    Article  Google Scholar 

  2. 2.

    Evans, S.D.: Delivering axle efficiency and fuel economy through optimised fluid design. SAE Int. (2014). https://doi.org/10.4271/2014-01-2799

    Article  Google Scholar 

  3. 3.

    Minami, I.: Ionic liquids in tribology. Molecules 14(6), 2286–2305 (2009). https://doi.org/10.3390/molecules14062286

    CAS  Article  Google Scholar 

  4. 4.

    Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016). https://doi.org/10.1016/j.triboint.2016.05.020

    CAS  Article  Google Scholar 

  5. 5.

    Spikes, H.: Friction modifier additives. Tribol. Lett. 60(5), 1–26 (2015). https://doi.org/10.1007/s11249-015-0589-z

    Article  Google Scholar 

  6. 6.

    Banerjee, D.A., Kessman, A.J., Cairns, D.R., Sierros, K.A.: Tribology of silica nanoparticle-reinforced, hydrophobic sol–gel composite coatings. Surf. Coat. Technol. 260, 214–219 (2014). https://doi.org/10.1016/j.surfcoat.2014.07.091

    CAS  Article  Google Scholar 

  7. 7.

    Wang, D., Bierwagen, G.P.: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64(4), 327–338 (2009). https://doi.org/10.1016/j.porgcoat.2008.08.010

    CAS  Article  Google Scholar 

  8. 8.

    Gläsel, H., Bauer, F., Ernst, H., Findeisen, M., Hartmann, E., Langguth, H., Mehnert, R., Schubert, R.: Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting on to nanoparticles. Macromol. Chem. Phys. 201, 2765–2770 (2000)

    Article  Google Scholar 

  9. 9.

    Brinker, C.J., Scherer, G.W.: Sol-Gel Science. Elsevier Science Publishing Co Inc., New York (1990)

    Google Scholar 

  10. 10.

    Colombo, P., Mera, G., Riedel, R., Sorarù, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. (2010). https://doi.org/10.1111/j.1551-2916.2010.03876.x

    Article  Google Scholar 

  11. 11.

    Morales, W., Fusaro, R.L., Siebert, M., Keith, T., Jansen, R., Herrera-Fierro, P.: A new antiwear additive/surface pretreatment for PFPE liquid lubricants. NASA TM. 107038 (1995)

  12. 12.

    Yu, L.G., Yamaguchi, E.S., Kasrai, M., Bancroft, G.M.: Study of silane-based antiwear additives: wear and chemistry. Tribol. Int. 44(6), 692–701 (2011). https://doi.org/10.1016/j.triboint.2010.03.005

    CAS  Article  Google Scholar 

  13. 13.

    Nyberg, E., Respantiningish, C.Y., Minami, I.: Molecular design of advanced lubricant base fluids: hydrocarbon-mimicking ionic liquids. RSC Adv. 7, 6364–6373 (2017). https://doi.org/10.1039/C6RA27065D

    CAS  Article  Google Scholar 

  14. 14.

    Hansen, J., Björling, M., Minami, I., Larsson, R.: Performance and mechanisms of silicate tribofilm in heavily loaded rolling/sliding non-conformal contacts. Tribol. Int. 123, 130–141 (2018). https://doi.org/10.1016/j.triboint.2018.03.006

    CAS  Article  Google Scholar 

  15. 15.

    Mang, T., Dresel, W. (eds.): Lubricants and Lubrication. Wiley-VCH, Weinheim (2007)

    Google Scholar 

  16. 16.

    Willis, R.F.: The formation of polysiloxane films on metal surfaces and their lubricating properties. Tribology 2, 175–178 (1969)

    CAS  Article  Google Scholar 

  17. 17.

    Tabor, D., Willis, R.F.: The formation of silicone polymer films on metal surfaces at high temperatures and their boundary lubricating properties. Wear 13(6), 413–442 (1969). https://doi.org/10.1016/0043-1648(69)90021-0

    CAS  Article  Google Scholar 

  18. 18.

    Kuribayashi, T., Yamamoto, Y.: Effect of friction and wear on formation of polysiloxane films at iron oxide surface in viscous couplings. Tribol. Trans. 43(4), 579–586 (2000). https://doi.org/10.1080/10402000008982381

    CAS  Article  Google Scholar 

  19. 19.

    Taylor, L.J., Spikes, H.A.: Friction-enhancing properties of ZDDP antiwear additive: part I—friction and morphology of ZDDP reaction films. Tribol. Trans. 46(3), 303–309 (2003). https://doi.org/10.1080/10402000308982630

    CAS  Article  Google Scholar 

  20. 20.

    Cann, P.M., Spikes, H.A., Hutchinson, J.: The development of a spacer layer imaging method (SLIM) for mapping elastohydrodynamic contacts. Tribol. Trans. 39(4), 915–921 (1996). https://doi.org/10.1080/10402009608983612

    CAS  Article  Google Scholar 

  21. 21.

    Green, D.A., Lewis, R.: The effects of soot-contaminated engine oil on wear and friction: a review. Proc. Inst. Mech. Eng. D 222(9), 1669–1689 (2008). https://doi.org/10.1243/09544070jauto468

    Article  Google Scholar 

  22. 22.

    Smeeth, M., Spikes, H.A., Gunsel, S.: The formation of viscous surface films by polymer solutions: boundary or elastohydrodynamic lubrication? Tribol. Trans. 39(3), 720–725 (1996). https://doi.org/10.1080/10402009608983589

    CAS  Article  Google Scholar 

  23. 23.

    Launer, P.J., Arkles, U.b.B.: Infrared Analysis of Organosilicon Compounds: Spectra-Structure Correlations. Reprinted from Silicon Compounds: Silanes & Silicones, 2013 Gelest, Inc Morrisville, PA, 175–178.

  24. 24.

    Ishida, H., Koenig, J.L.: Vibrational assignments of organosilanetriols. I. Vinylsilanetriol and vinylsilanetriol-D3 in aqueous solutions. Appl. Spectrosc. 32(5), 462–469 (2016). https://doi.org/10.1366/000370278774330919

    Article  Google Scholar 

  25. 25.

    Li, Y.S., Wright, P.B., Puritt, R., Tran, T.: Vibrational spectroscopic studies of vinyltriethoxysilane sol-gel and its coating. Spectrochim. Acta. A 60(12), 2759–2766 (2004). https://doi.org/10.1016/j.saa.2003.12.047

    CAS  Article  Google Scholar 

  26. 26.

    Primeau, N., Vautey, C., Langlet, M.: The effect of thermal annealing on aerosol-gel deposited SiO2 films a FTIR deconvolution study. Thin Solid Films 310, 47–56 (1997)

    CAS  Article  Google Scholar 

  27. 27.

    Adhvaryu, A., Sharma, Y.K., Singh, I.D.: Studies on the oxidative behavior of base oils and their chromatographic fractions. Fuel 78, 1293–1302 (1999)

    CAS  Article  Google Scholar 

  28. 28.

    Sorarù, G.D., Karakuscu, A., Boissiere, C., Babonneau, F.: On the shrinkage during pyrolysis of thin films and bulk components: The case of a hybrid silica gel precursor for SiOC glasses. J. Eur. Ceram. Soc. 32(3), 627–632 (2012). https://doi.org/10.1016/j.jeurceramsoc.2011.10.004

    CAS  Article  Google Scholar 

  29. 29.

    Zanchetta, E., Cattaldo, M., Franchin, G., Schwentenwein, M., Homa, J., Brusatin, G., Colombo, P.: Stereolithography of SiOC ceramic microcomponents. Adv. Mater. 28(2), 370–376 (2016). https://doi.org/10.1002/adma.201503470

    CAS  Article  Google Scholar 

  30. 30.

    Furey, M.J.: The formation of polymeric films directly on rubbing surfaces to reduce wear. Wear 26(3), 369–392 (1973)

    CAS  Article  Google Scholar 

  31. 31.

    Taylor, L.J., Spikes, H.A.: Friction-enhancing properties of ZDDP antiwear additive: part II—influence of ZDDP reaction films on EHD lubrication. Tribol. Trans. 46(3), 310–314 (2003). https://doi.org/10.1080/10402000308982631

    CAS  Article  Google Scholar 

  32. 32.

    Miklozic, K.T., Forbus, T.R., Spikes, H.A.: Performance of friction modifiers on ZDDP-generated surfaces. Tribol. Trans. 50(3), 328–335 (2008). https://doi.org/10.1080/10402000701413505

    CAS  Article  Google Scholar 

  33. 33.

    Müller, M., Topolovec-Miklozic, K., Dardin, A., Spikes, H.A.: The design of boundary film-forming PMA viscosity modifiers. Tribol. Trans. 49(2), 225–232 (2006). https://doi.org/10.1080/05698190600614833

    CAS  Article  Google Scholar 

  34. 34.

    Anghel, V., Bovington, C., Spikes, H.A.: Thick-boundary-film formation by friction modifier additives. Lubr. Sci. 11(4), 313–335 (1999)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank Evonik Industries AG, Resource Efficiency for the financial support. The authors would also like to thank Dr. Philipp Albert (Evonik) for providing the samples and discussions. Finally, the authors would also like to thank Günter Schmitt (Evonik) for supplying the tribological test equipment.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin Juretzka.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Juretzka, B., Wieber, S., Wilkens, R. et al. Tribological Behavior of Film Forming Organosilane/-Siloxane Oil Additives: Film Characterization and Influences on Lubrication. Tribol Lett 68, 5 (2020). https://doi.org/10.1007/s11249-019-1241-0

Download citation

Keywords

  • Tribochemistry
  • Lubrication
  • Additive
  • Chemical analysis