Selenium Chemisorption Makes Iron Surfaces Slippery

Abstract

In the effort to reduce the energy consumption due to friction, finding new effective lubricants is of primary importance. Here we suggest selenium as a possible element for a highly effective lubricant on iron/iron interfaces by means of density functional theory. The adsorption properties of Se on the most stable iron surface are studied and the metal–adsorbate interaction is characterized. The adsorption reveals that selenium behaves similarly to sulfur and phosphorus, two key elements for high-pressure, anti-wear lubricant additives. The tribological properties of the Fe–Se/Se–Fe interface and the electronic modifications induced by the additive are then investigated and compared with Fe–P/P–Fe and Fe–S/S–Fe interfaces. The charge rearrangement at the interface and the density of states reveal the formation of strong covalent interactions inside the adsorbed layer of selenium atoms that weaken the metal–metal interaction. The calculated work of adhesion and ideal interfacial shear strength show that, with respect to P and S, Se possesses superior lubricating properties.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Notes

  1. 1.

    The values slightly larger but consistent with previous findings in literature [16]. This is probably due to the different number of iron layers here considered in the iron slabs, 5 against 3, and to the higher number of high symmetry points used here for interpolating the PES’s: we consider also the three-fold and the intermediate points, that allow us to provide a more accurate evaluation of the PES and of the MEP.

References

  1. 1.

    Holmberg, K., Erdemir, A.: Global impact of friction on energy consumption, economy and environment. Fme Trans 43(3), 181–5 (2015)

    Google Scholar 

  2. 2.

    Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5(3), 263–284 (2017)

    CAS  Google Scholar 

  3. 3.

    Binnig, G., Quate, C.F., Gerber, Ch.: Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986)

    CAS  Google Scholar 

  4. 4.

    Sarid, D., Elings, V.: Review of scanning force microscopy. J. Vac Sci. Technol. 9(2), 431–437 (1991)

    CAS  Google Scholar 

  5. 5.

    Dagata, J.A.: Scanning force microscopy with applications to electric, magnetic and atomic forces by dror sarid oxford university press, 1991. Scanning 14(2), 118–120 (1992)

    Google Scholar 

  6. 6.

    Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435(7044), 929 (2005)

    CAS  Google Scholar 

  7. 7.

    Luan, B., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E 74, 026111 (2006)

    Google Scholar 

  8. 8.

    Reguzzoni, M., Fasolino, A., Molinari, E., Righi, M.C.: Potential energy surface for graphene on graphene: ab initio derivation, analytical description, and microscopic interpretation. Phys. Rev. B 86, 245434 (2012)

    Google Scholar 

  9. 9.

    Zilibotti, G., Righi, M.C.: Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir 27(11), 6862–6867 (2011). PMID: 21545120

    CAS  Google Scholar 

  10. 10.

    Zilibotti, G., Righi, M.C., Ferrario, M.: Ab initio study on the surface chemistry and nanotribological properties of passivated diamond surfaces. Phys. Rev. B 79, 075420 (2009)

    Google Scholar 

  11. 11.

    Cahangirov, S., Ataca, C., Topsakal, M., Sahin, H., Ciraci, S.: Frictional figures of merit for single layered nanostructures. Phys. Rev. Lett. 108, 126103 (2012)

    CAS  Google Scholar 

  12. 12.

    De Barros Bouchet, M.-I., Zilibotti, G., Matta, C., Righi, M.C., Vandenbulcke, L., Vacher, B., Martin, J.-M.: Friction of diamond in the presence of water vapor and hydrogen gas. Coupling gas-phase lubrication and first-principles studies. J. Phys. Chem. C 116(12), 6966–6972 (2012)

    Google Scholar 

  13. 13.

    Restuccia, P., Levita, G., Wolloch, M., Losi, G., Fatti, G., Ferrario, M., Righi, M.C.: Ideal adhesive and shear strengths of solid interfaces: a high throughput ab initio approach. Comput. Mater. Sci. 154, 517–529 (2018)

    CAS  Google Scholar 

  14. 14.

    Restuccia, P., Righi, M.C.: Tribochemistry of graphene on iron and its possible role in lubrication of steel. Carbon 106, 118–124 (2016)

    CAS  Google Scholar 

  15. 15.

    De Barros-Bouchet, M.I., Righi, M.C., Philippon, D., Mambingo-Doumbe, S., Le-Mogne, T., Martin, J.M., Bouffet, A.: Tribochemistry of phosphorus additives: experiments and first-principles calculations. RSC Adv. 5, 49270–49279 (2015)

    Google Scholar 

  16. 16.

    Righi, M.C., Loehlé, S., De Barros Bouchet, M.I., Mambingo-Doumbe, S., Martin, J.M.: A comparative study on the functionality of s- and p-based lubricant additives by combined first principles and experimental analysis. RSC Adv. 6, 47753–47760 (2016)

    CAS  Google Scholar 

  17. 17.

    Seah, M.P.: Adsorption-induced interface decohesion. Acta Metall. 28(7), 955–962 (1980)

    CAS  Google Scholar 

  18. 18.

    Rangarajan, V., Toncheff, R., Franks, L.L.: Surface segregation of phosphorus, carbon, and sulfur in commercial low-carbon grades of steel. Metall. Mater. Trans. A 29(11), 2707–2715 (1998)

    Google Scholar 

  19. 19.

    Arabczyk, W., Mssig, H.-J., Storbeck, F.: Phosphorus segregation on iron (111) surfaces studied by AES, XPS, and LEED. Surf. Sci. 251–252, 804–808 (1991)

    Google Scholar 

  20. 20.

    Shell, C.A., Rivière, J.C.: Quantitative Auger spectroscopic analysis of segregation of phosphorus in iron. Surf. Sci. 40(1), 149–156 (1973)

    CAS  Google Scholar 

  21. 21.

    Wachowicz, E., Kiejna, A.: Effect of impurities on structural, cohesive and magnetic properties of grain boundaries in \(\alpha\)-fe. Model. Simulation Mater. Sci. Eng. 19(2), 025001 (2011)

    Google Scholar 

  22. 22.

    Fatti, G., Restuccia, P., Calandra, C., Righi, M.C.: Phosphorus adsorption on fe(110): an ab initio comparative study of iron passivation by different adsorbates. J. Phys. Chem. C 122(49), 28105–28112 (2018)

    CAS  Google Scholar 

  23. 23.

    Pichard, C., Guttmann, M., Rieu, J., Goux, C.: Sgrgation intergranulaire des lments de la famille du soufre dans le fer pur. Le Journal de Physique Colloques 36(C4), C4 151–155 (1975)

    Google Scholar 

  24. 24.

    McMahon Jr., C.J., Marchut, L.: Solute segregation in iron-based alloys. J. Vac. Sci. Technol. 15(2), 450–466 (1978)

    CAS  Google Scholar 

  25. 25.

    Hondros, E.D., Seah, M.P.: The theory of grain boundary segregation in terms of surface adsorption analogues. Metall. Trans. A 8(9), 1363–1371 (1977)

    Google Scholar 

  26. 26.

    Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A.P., Smogunov, A., Umari, P., Wentzcovitch, R.M.: Quantum espresso: a modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21(39), 395502 (2009)

    Google Scholar 

  27. 27.

    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    CAS  Google Scholar 

  28. 28.

    WebElements Periodic Table: www.webelements.com

  29. 29.

    Monkhorst, H.J., Pack, J.D.: Special points for brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Google Scholar 

  30. 30.

    Wolloch, M., Levita, G., Restuccia, P., Righi, M.C.: Interfacial charge density and its connection to adhesion and frictional forces. Phys. Rev. Lett. 121, 026804 (2018)

    CAS  Google Scholar 

  31. 31.

    González, E.A., Jasen, P.V., Sandoval, M., Bechthold, P., Juan, A., Setina Batic, B., Jenko, M.: Density functional theory study of selenium adsorption on fe (1 1 0). Appl. Surf. Sci. 257(15), 6878–6883 (2011)

    Google Scholar 

  32. 32.

    Mortensen, J.J., Ganduglia-Pirovano, M.V., Hansen, L.B., Hammer, B., Stoltze, P., Nrskov, J.K.: Nitrogen adsorption on Fe(111), (100), and (110) surfaces. Surf. Sci. 422(1), 8–16 (1999)

    CAS  Google Scholar 

  33. 33.

    Spencer, M.J.S., Snook, I.K., Yarovsky, I.: Coverage-dependent adsorption of atomic sulfur on Fe(110): a DFT study. J. Phys. Chem. B 109(19), 9604–9612 (2005)

    CAS  Google Scholar 

  34. 34.

    Weissenrieder, J., Göthelid, M., Månsson, M., von Schenck, H., Tjernberg, O., Karlsson, U.O.: Oxygen structures on Fe(110). Surf. Sci. 527(1), 163–172 (2003)

    CAS  Google Scholar 

  35. 35.

    Lang, N.D.: Small adsorbate dipole moments need not imply small charge transfers. Surf. Sci. Lett. 127(2), L118–L122 (1983)

    CAS  Google Scholar 

  36. 36.

    Bagus, P.S., Käfer, D., Witte, G., Wöll, C.: Work function changes induced by charged adsorbates: origin of the polarity asymmetry. Phys. Rev. Lett. 100, 126101 (2008)

    Google Scholar 

  37. 37.

    Migani, A., Sousa, C., Illas, F.: Chemisorption of atomic chlorine on metal surfaces and the interpretation of the induced work function changes. Surf. Sci. 574(2), 297–305 (2005)

    CAS  Google Scholar 

  38. 38.

    Michaelides, A., Hu, P., Lee, M.-H., Alavi, A., King, D.A.: Resolution of an ancient surface science anomaly: work function change induced by n adsorption on \(\rm W{100}\). Phys. Rev. Lett. 90, 246103 (2003)

    CAS  Google Scholar 

  39. 39.

    Leung, T.C., Kao, C.L., Su, W.S., Feng, Y.J., Chan, C.T.: Relationship between surface dipole, work function and charge transfer: some exceptions to an established rule. Phys. Rev. B 68, 195408 (2003)

    Google Scholar 

  40. 40.

    Weinan, E., Ren, W., Vanden-Eijnden, E.: String method for the study of rare events. Phys. Rev. B 66, 052301 (2002)

    Google Scholar 

  41. 41.

    Weinan, E., Ren, W., Vanden-Eijnden, E.: Simplified and improved string method for computing the minimum energy paths in barrier-crossing events. J. Chem. Phys. 126(16), 164103 (2007)

    Google Scholar 

  42. 42.

    Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K.R.S., Erdemir, A., Sumant, A.V.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348(6239), 1118–1122 (2015)

    CAS  Google Scholar 

  43. 43.

    Cahangirov, S., Ciraci, S., Ongun Özçelik, V.: Superlubricity through graphene multilayers between ni(111) surfaces. Phys. Rev. B 87, 205428 (2013)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. C. Righi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fatti, G., Righi, M.C. Selenium Chemisorption Makes Iron Surfaces Slippery. Tribol Lett 67, 125 (2019). https://doi.org/10.1007/s11249-019-1235-y

Download citation

Keywords

  • Boundary lubrication
  • Adsorption
  • Adhesion
  • Selenium
  • First principles calculations