Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Frictional Anisotropy of Al, Pt, and Pd Nanoparticles on a Graphene Substrate


The frictional anisotropy of metallic nanoparticles is investigated using a molecular dynamics method. Calculations of anisotropy have been performed for aluminum, palladium, and platinum nanoparticles containing 10,000 atoms. Anisotropy is studied at high sliding velocities of nanoparticles over the graphene surface. The influences of incommensurability and short-range order of nanoparticles’ contact surfaces lead to the absence of pronounced angular dependence of frictional force.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


\(\theta\) :

Angle of force application (degrees)

\(F_a\) :

Applied force (nN)

F :

Total frictional force (nN)

\(F_{x,y}\) :

Frictional force components along x and y axes (nN)

\(L_{x,y,z}\) :

Sizes of nanoparticle along x, y, and z axes (nm)

\(F_{sy}\) :

Substrate force along y axis (nN)

\(y_{\mathrm{CM}}\) :

y component of the center of mass position of nanoparticle (nm)

\(v_{y}\) :

y component of the center of mass velocity of nanoparticle (m/s)

T :

System temperature (K)

t :

Time (s)


  1. 1.

    Hill, R.: The Mathematical Theory of Plasticity. Oxford University Press, London (1950)

  2. 2.

    Pietruszczak, S.: On inelastic behaviour of anisotropic frictional materials. Mech. Cohes. Frict. Mat. 4(3), 281–293 (1999)

  3. 3.

    Chen, L., Wang, Y., Bu, H., Chen, Y.: Simulations of the anisotropy of friction force between a silicon tip and a substrate at nanoscale. Proc. Inst. Mech. Eng. N 227(3), 130–134 (2013). https://doi.org/10.1177/1740349913482117

  4. 4.

    He, G., Müser, M.H., Robbins, M.O.: Adsorbed layers and the origin of static friction. Science 284(5420), 1650–1652 (1999). https://doi.org/10.1126/science.284.5420.1650

  5. 5.

    Depondt, P., Ghazali, A., Levy, J.C.S.: Self-locking of a modulated single overlayer in a nanotribology simulation. Surf. Sci. 419(1), 29–37 (1998)

  6. 6.

    Almeida, C., Prioli, R., Fragneaud, B., Cancado, L., Paupitz, R., Galvao, D., De Cicco, M., Menezes, M., Achete, C., Capaz, R.: Giant and tunable anisotropy of nanoscale friction in graphene. Sci. Rep. 6, 31569 (2016). https://doi.org/10.1038/srep31569

  7. 7.

    Gnecco, E., Meyer, E. (eds.): Fundamentals of Friction and Wear on the Nanoscale, 2nd edn. Springer, Berlin (2015)

  8. 8.

    Kumar, D., Jain, J., Gosvami, N.N.: Anisotropy in nanoscale friction and wear of precipitate containing AZ91 magnesium alloy. Tribol. Lett. 67(2), 44 (2019). https://doi.org/10.1007/s11249-019-1160-0

  9. 9.

    Pogrebnjak, A.D., Ponomarev, A.G., Shpak, A.P., Kunitskii, Y.A.: Application of micro- and nanoprobes to the analysis of small-sized 3d materials, nanosystems, and nanoobjects. Phys. Usp. 55(3), 270–300 (2012). https://doi.org/10.3367/ufne.0182.201203d.0287

  10. 10.

    Feldmann, M., Dietzel, D., Tekiel, A., Topple, J., Grütter, P., Schirmeisen, A.: Universal aging mechanism for static and sliding friction of metallic nanoparticles. Phys. Rev. Lett. 117, 025502 (2016). https://doi.org/10.1103/PhysRevLett.117.025502

  11. 11.

    Vanossi, A., Dietzel, D., Schirmeisen, A., Meyer, E., Pawlak, R., Glatzel, T., Kisiel, M., Kawai, S., Manini, N.: Recent highlights in nanoscale and mesoscale friction. Beilstein J. Nanotechnol. 9, 1995–2014 (2018). https://doi.org/10.3762/bjnano.9.190

  12. 12.

    Ye, Z., Martini, A., Thiel, P., Lovelady, H.H., McLaughlin, K., Rabson, D.A.: Atomistic simulation of frictional anisotropy on quasicrystal approximant surfaces. Phys. Rev. B 93, 235438 (2016). https://doi.org/10.1103/PhysRevB.93.235438

  13. 13.

    Castro-Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81(1), 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

  14. 14.

    Khomenko, A.V., Prodanov, N.V.: Study of friction of Ag and Ni nanoparticles: an atomistic approach. J. Phys. Chem. C 114(47), 19958–19965 (2010). https://doi.org/10.1021/jp108981e

  15. 15.

    Khomenko, A.V., Prodanov, N.V., Persson, B.N.J.: Atomistic modelling of friction of Cu and Au nanoparticles adsorbed on graphene. Condens. Matter Phys. 16, 33401 (2013). https://doi.org/10.5488/CMP.16.33401

  16. 16.

    Khomenko, A., Zakharov, M., Boyko, D., Persson, B.N.J.: Atomistic modeling of tribological properties of Pd and Al nanoparticles on a graphene surface. Beilstein J. Nanotechnol. 9, 1239–1246 (2018). https://doi.org/10.3762/bjnano.9.115

  17. 17.

    Khomenko, A.V., Yushchenko, O.V.: Solid-liquid transition of ultrathin lubricant film. Phys. Rev. E 68, 036110 (2003)

  18. 18.

    Khomenko, A.V., Lyashenko, I.A.: Hysteresis phenomena during melting of an ultrathin lubricant film. Phys. Solid State 49(5), 936–940 (2007)

  19. 19.

    Khomenko, A., Lyashenko, I.: Melting of ultrathin lubricant film due to dissipative heating of friction surfaces. Tech. Phys. 52(9), 1239–1243 (2007). https://doi.org/10.1134/S1063784207090241

  20. 20.

    Khomenko, A.V., Lyashenko, I.A.: Phase dynamics of a thin lubricant film between solid surfaces at the deformational defect of shear modulus. J. Phys. Stud. 11(3), 268–278 (2007). (in Ukrainian)

  21. 21.

    Fessler, G., Sadeghi, A., Glatzel, T., Goedecker, S., Meyer, E.: Atomic friction: anisotropy and asymmetry effects. Tribol. Lett. 67(2), 59 (2019). https://doi.org/10.1007/s11249-019-1172-9

  22. 22.

    Khomenko, A.V., Boyko, D.V., Zakharov, M.V., Khomenko, K.P., Khyzhnya, Y.V.: Molecular dynamics of aluminum nanoparticles friction on graphene. In: Proceedings of the IEEE 7th International Conference on Nanomaterials: Application Properties (NAP’17) (IEEE, USA) 6, p. 01NNPT01-1-4. https://doi.org/10.1109/NAP.2017.8190181 (2017)

  23. 23.

    Khomenko, A.V., Zakharov, M.V., Khomenko, K.P., Khyzhnya, Y.V., Trofimenko, P.E.: Atomistic modeling of friction force dependence on contact area of metallic nanoparticles on graphene. In: Proceedings of the IEEE 8th International Conference on Nanomaterials: Application Properties (NAP’18) (IEEE, USA) 4, p. 04NNLS15-1-4 (2018)

  24. 24.

    Sasaki, N., Kobayashi, K., Tsukada, M.: Atomic-scale friction image of graphite in atomic-force microscopy. Phys. Rev. B. 54(3), 2138–2149 (1996). https://doi.org/10.1103/PhysRevB.54.2138

  25. 25.

    Zhou, X., Wadley, H., Johnson, R., Larson, D., Tabat, N., Cerezo, A., Petford-Long, A., Smith, G., Clifton, P., Martens, R., Kelly, T.: Atomic scale structure of sputtered metal multilayers. Acta Mater. 49(19), 4005–4015 (2001). https://doi.org/10.1016/S1359-6454(01)00287-7

  26. 26.

    Khomenko, A.V., Prodanov, N.V.: Molecular dynamics of cleavage and flake formation during the interaction of a graphite surface with a rigid nanoasperity. Carbon 48(4), 1234–1243 (2010). https://doi.org/10.1016/j.carbon.2009.11.046

  27. 27.

    Prodanov, N.V., Khomenko, A.V.: Computational investigation of the temperature influence on the cleavage of a graphite surface. Surf. Sci. 604(7–8), 730–740 (2010). https://doi.org/10.1016/j.susc.2010.01.024

  28. 28.

    Rapaport, D.C.: The Art of Molecular Dynamics Simulation, 2nd edn. Cambridge University Press, Cambridge (2004)

  29. 29.

    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984). https://doi.org/10.1063/1.448118

  30. 30.

    Humphrey, W., Dalke, A., Schulten, K.: VMD: visual molecular dynamics. J. Mol. Graph. 14(1), 33–38 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

  31. 31.

    Choi, J.S., Kim, J.-S., Byun, I.-S., Lee, D.H., Lee, M.J., Park, B.H., Lee, C., Yoon, D., Cheong, H., Lee, K.H., Son, Y.-W., Park, J.Y., Salmeron, M.: Friction anisotropy–driven domain imaging on exfoliated monolayer graphene. Science 333(6042), 607–610 (2011). https://doi.org/10.1126/science.1207110

  32. 32.

    Khomenko, A.V., Prodanov, N.V., Khomenko, M.A., Krasulya, B.O.: Frictional anisotropy of metal nanoparticles adsorbed on graphene. J. Nano-Electron. Phys. 5(3), 03018 (2013). (8pp)

  33. 33.

    He, G., Robbins, M.O.: Simulations of the static friction due to adsorbed molecules. Phys. Rev. B 64, 035413 (2001). https://doi.org/10.1103/PhysRevB.64.035413

  34. 34.

    He, G., Robbins, M.O.: Simulations of the kinetic friction due to adsorbed surface layers. Tribol. Lett. 10(1), 7–14 (2001). https://doi.org/10.1023/A:1009030413641

  35. 35.

    Braun, O.M., Manini, N.: Dependence of boundary lubrication on the misfit angle between the sliding surfaces. Phys. Rev. E 83, 021601 (2011). https://doi.org/10.1103/PhysRevE.83.021601

  36. 36.

    Dietzel, D., Feldmann, M., Schwarz, U.D., Fuchs, H., Schirmeisen, A.: Scaling laws of structural lubricity. Phys. Rev. Lett. 111, 235502 (2013). https://doi.org/10.1103/PhysRevLett.111.235502

  37. 37.

    Matsushita, K., Matsukawa, H., Sasaki, N.: Atomic scale friction between clean graphite surfaces. Sol. State Commun. 136(1), 51–55 (2005). https://doi.org/10.1016/j.ssc.2005.05.052

Download references


This study is supported by the Ministry of Education and Science of Ukraine within the framework of project “Atomistic and statistical representation of formation and friction of nanodimensional systems” (No. 0118U003584) and visitor grant of Forschungszentrum-Jülich, Germany. A. K. is thankful to Dr. Bo N. J. Persson for hospitality during his stay in Forschungszentrum-Jülich.

Author information

Correspondence to Alexei Khomenko.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khomenko, A., Zakharov, M. & Persson, B.N.J. Frictional Anisotropy of Al, Pt, and Pd Nanoparticles on a Graphene Substrate. Tribol Lett 67, 113 (2019). https://doi.org/10.1007/s11249-019-1226-z

Download citation


  • Frictional force
  • Graphene
  • Nanoparticle
  • Nanotribology
  • Aluminum
  • Palladium
  • Platinum