Skip to main content
Log in

Subsurface Dynamic Deformation and Nano-structural Evolution in 40Cr Steel Under Dry Sliding Wear

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Dry sliding tribological properties of normalized 40Cr steel pins against quenched and tempered GCr15 discs were investigated under various sliding distances through disc-on-pin contact configuration. Microstructural feature evolution and strain-hardening behavior of worn subsurface in 40Cr pins were systematically analyzed using scanning electron microscopy and transmission electron microscopy. It is found that based on the variation of wear rate, three stages can be divided throughout the friction process: initial wear, slow wear and stable wear. The corresponding microstructures beneath contact surface are subjected to significant strain-hardening effect and structural rearrangement. Nano-grains of 40–100 nm are produced in the topmost subsurface layer and the nanocrystallization mechanism during friction process is further elucidated. Pronounced vortex structures are generated in the localized subsurface zones due to high strain localization and shear instability. With the prolongation of sliding distances, vortex structures suffer dynamic embrittlement and exfoliation from the wear surface as a result of periodically excessive hardening effect, leading to the high wear rate in stable wear stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Moore, M.A., Douthwaite, R.M.: Plastic deformation below worn surfaces. Metall. Trans. A 7(12), 1833–1839 (1976)

    Article  Google Scholar 

  2. Rainforth, W.M., Stevens, R., Nutting, J.: Deformation structures induced by sliding contact. Philos. Mag. A 66(4), 621–641 (1992)

    Article  Google Scholar 

  3. Rigney, D.A., Glaeser, W.A.: The significance of near surface microstructure in the wear process. Wear 46(1), 241–250 (1978)

    Article  CAS  Google Scholar 

  4. Markov, D., Kelly, D.: Mechanisms of adhesion-initiated catastrophic wear: pure sliding. Wear 239(2), 189–210 (2000)

    Article  CAS  Google Scholar 

  5. Su, T.F., Han, X., Wang, Y.B., Yin, M.L., Liang, C., An, J.: An investigation on subsurface microstructural evolution and mild to severe wear transition in AZ51 magnesium alloy. Tribol. Trans. 58(3), 549–559 (2015)

    Article  CAS  Google Scholar 

  6. Rigney, D.A., Karthikeyan, S.: The evolution of tribomaterial during sliding: a brief introduction. Tribol. Lett. 39(1), 3–7 (2010)

    Article  Google Scholar 

  7. Yao, B., Han, Z., Lu, K.: Correlation between wear resistance and subsurface recrystallization structure in copper. Wear 294, 438–445 (2012)

    Article  Google Scholar 

  8. Korres, S., Feser, T., Dienwiebel, M.: In situ observation of wear particle formation on lubricated sliding surfaces. Acta Mater. 60(1), 420–429 (2012)

    Article  CAS  Google Scholar 

  9. Sun, H.Q., Shi, Y.N., Zhang, M.X.: Sliding wear-induced microstructure evolution of nanocrystalline and coarse-grained AZ91D Mg alloy. Wear 266(7–8), 666–670 (2009)

    Article  CAS  Google Scholar 

  10. Sato, H., Kaneko, Y., Watanabe, Y.: Effects of work hardening rate on formation of nanocrystallized subsurface layer in Cu alloys. Japanese Journal of Applied Physics 56(1S), 01AE05 (2016)

    Article  Google Scholar 

  11. Liu, X.C., Zhang, H.W., Lu, K.: Strain-induced ultrahard and ultrastable nanolaminated structure in nickel. Science 342(6156), 337–340 (2013)

    Article  CAS  Google Scholar 

  12. Chen, X., Han, Z., Li, X., Lu, K.: Lowering coefficient of friction in Cu alloys with stable gradient nanostructures. Sci. Adv. 2(12), e1601942 (2016)

    Article  Google Scholar 

  13. Liu, Y., Jin, B., Lu, J.: Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment. Mater. Sci. Eng. A 636, 446–451 (2015)

    Article  CAS  Google Scholar 

  14. Wang, X., Wei, X., Hong, X., Yang, J., Wang, W.: Formation of sliding friction-induced deformation layer with nanocrystalline structure in T10 steel against 20CrMnTi steel. Appl. Surf. Sci. 280, 381–387 (2013)

    Article  CAS  Google Scholar 

  15. Chromik, R.R., Zhang, Y.: Nanomechanical testing of third bodies. Curr. Opin. Solid State Mater. Sci. 22(4), 142–155 (2018)

    Article  CAS  Google Scholar 

  16. Dautzenberg, J.H., Zaat, J.H.: Quantitative determination of deformation by sliding wear. Wear 23(1), 9–19 (1973)

    Article  Google Scholar 

  17. Kato, H., Sasase, M., Suiya, N.: Friction-induced ultra-fine and nanocrystalline structures on metal surfaces in dry sliding. Tribol. Int. 43(5–6), 925–928 (2010)

    Article  CAS  Google Scholar 

  18. Zhang, Y.S., Zhang, P.X., Niu, H.Z., Chen, C., Wang, G., Xiao, D.H., Bai, X.F.: Surface nanocrystallization of Cu and Ta by sliding friction. Mater. Sci. Eng. A 607, 351–355 (2014)

    Article  CAS  Google Scholar 

  19. Tarasov, S., Rubtsov, V., Kolubaev, A.: Subsurface shear instability and nanostructuring of metals in sliding. Wear 268(1–2), 59–66 (2010)

    Article  CAS  Google Scholar 

  20. Yao, B., Han, Z., Li, Y.S., Tao, N.R., Lu, K.: Dry sliding tribological properties of nanostructured copper subjected to dynamic plastic deformation. Wear 271(9–10), 1609–1616 (2011)

    Article  CAS  Google Scholar 

  21. Wasekar, N.P., Haridoss, P., Seshadri, S.K., Sundararajan, G.: Sliding wear behavior of nanocrystalline nickel coatings: influence of grain size. Wear 296(1–2), 536–546 (2012)

    Article  CAS  Google Scholar 

  22. Venkataraman, B., Sundararajan, G.: The sliding wear behaviour of Al-SiC particulate composites-II. The characterization of subsurface deformation and correlation with wear behaviour. Acta Mater. 44(2), 461–473 (1996)

    Article  CAS  Google Scholar 

  23. Sato, H., Murase, T., Fujii, T., Onaka, S., Watanabe, Y., Kato, M.: Formation of a wear-induced layer with nanocrystalline structure in Al-Al3Ti functionally graded material. Acta Mater. 56(17), 4549–4558 (2008)

    Article  CAS  Google Scholar 

  24. Cai, W., Bellon, P.: Subsurface microstructure evolution and deformation mechanism of Ag-Cu eutectic alloy after dry sliding wear. Wear 303(1–2), 602–610 (2013)

    Article  CAS  Google Scholar 

  25. Panin, V., Kolubaev, A., Tarasov, S., Popov, V.: Subsurface layer formation during sliding friction. Wear 249(10–11), 860–867 (2001)

    Article  CAS  Google Scholar 

  26. Yin, C.H., Liang, Y.L., Jiang, Y., Yang, M., Long, S.L.: Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel. Appl. Surf. Sci. 423, 305–313 (2017)

    Article  CAS  Google Scholar 

  27. Lojkowski, W., Djahanbakhsh, M., Bürkle, G., Gierlotka, S., Zielinski, W., Fecht, H.J.: Nanostructure formation on the surface of railway tracks. Mater. Sci. Eng. A 303(1–2), 197–208 (2001)

    Article  Google Scholar 

  28. Zhang, H.W., Ohsaki, S., Mitao, S., Ohnuma, M., Hono, K.: Microstructural investigation of white etching layer on pearlite steel rail. Mater. Sci. Eng. A 421(1–2), 191–199 (2006)

    Article  Google Scholar 

  29. Xu, Y., Fang, L., Cen, Q., Zhu, J.: Nano structure and transformation mechanism of white layer for AISI1045 steel during impact wear. Wear 258(1–4), 537–544 (2005)

    Article  CAS  Google Scholar 

  30. Zhou, L., Liu, G., Han, Z., Lu, K.: Grain size effect on wear resistance of a nanostructured AISI52100 steel. Scripta Mater. 58(6), 445–448 (2008)

    Article  CAS  Google Scholar 

  31. Pan, R., Ren, R., Chen, C., Zhao, X.: Formation of nanocrystalline structure in pearlitic steels by dry sliding wear. Mater. Charact. 132, 397–404 (2017)

    Article  CAS  Google Scholar 

  32. Tao, N.R., Wang, Z.B., Tong, W.P., Sui, M.L., Lu, J., Lu, K.: An investigation of surface nanocrystallization mechanism in Fe induced by surface mechanical attrition treatment. Acta Mater. 50(18), 4603–4616 (2002)

    Article  CAS  Google Scholar 

  33. Schouwenaars, R., Jacobo, V.H., Ortiz, A.: Microstructural aspects of wear in soft tribological alloys. Wear 263(1–6), 727–735 (2007)

    Article  CAS  Google Scholar 

  34. Psakhie, S.G., Zolnikov, K.P., Dmitriev, A.I., Smolin, A.Y., Shilko, E.V.: Dynamic vortex defects in deformed material. Phys. Mesomech. 17(1), 15–22 (2014)

    Article  Google Scholar 

  35. Kolubaev, A., Tarasov, S., Sizova, O., Kolubaev, E.: Scale-dependent subsurface deformation of metallic materials in sliding. Tribol. Int. 43(4), 695–699 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xicheng Wei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, S., Zhu, P., Yang, Y. et al. Subsurface Dynamic Deformation and Nano-structural Evolution in 40Cr Steel Under Dry Sliding Wear. Tribol Lett 67, 102 (2019). https://doi.org/10.1007/s11249-019-1215-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1215-2

Keywords

Navigation