Skip to main content
Log in

Abrasive Wear Behavior and Its Relation with the Macro-indentation Fracture Toughness of an Fe-Based Super-Hard Hardfacing Deposit

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this study, flux-cored arc welding was performed to deposit an Fe-based super-hard hardfacing whit 911 HV30 on an st37 substrate. The dry sand/rubber wheel abrasion test (ASTM G65) was performed to investigate the abrasive wear behavior of the hardfacing deposit and its average weight loss was measured to be 0.075 gr. The worn surface and cross sections of wear sample were studied by optical microscopy and scanning electron microscopy. The results showed that the fracture behavior of the phases during abrasion testing is similar to their fracture behavior during macro-indentation fracture toughness testing investigated in the previous study (Bahoosh et al. in Eng Fail Anal 92:480–494, https://doi.org/10.1016/j.engfailanal.2018.06.021, 2018). Consequently, the micro-mechanisms of abrasion resistance associated with the fracture behavior of the phases such as the fragmentation of the primary \({\text{M}}_{7} \left({\text{CB}} \right)_{3}\) in the preferred direction and higher abrasion resistance of the core–rim-structured phases were determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abrasion resistant applications. Corodur welding wire Co. https://www.corodur.de/en/products/abrasion-resistant-applications (2019). Accessed 1 July 2019

  2. ASTM-G65: Standard test method for measuring abrasion using the dry sand/rubber wheel apparatus. ASTM Int., West Conshohocken (2010)

    Google Scholar 

  3. Petrica, M., Katsich, C., Badisch, E., Kremsner, F.: Study of abrasive wear phenomena in dry and slurry 3-body conditions. Tribol. Int. 64, 196–203 (2013). https://doi.org/10.1016/j.triboint.2013.03.028

    Article  Google Scholar 

  4. Yüksel, N., Şahin, S.: Wear behavior–hardness–microstructure relation of Fe–Cr–C and Fe–Cr–C–B based hardfacing alloys. Mater. Des. 58, 491–498 (2014). https://doi.org/10.1016/j.matdes.2014.02.032

    Article  CAS  Google Scholar 

  5. Bedolla-Jacuinde, A., Guerra, F.V., Mejía, I., Zuno-Silva, J., Rainforth, M.: Abrasive wear of V-Nb–Ti alloyed high-chromium white irons. Wear 332, 1006–1011 (2015). https://doi.org/10.1016/j.wear.2015.01.049

    Article  CAS  Google Scholar 

  6. Gualco, A., Svoboda, H.G., Surian, E.S.: Study of abrasive wear resistance of Fe-based nanostructured hardfacing. Wear 360, 14–20 (2016). https://doi.org/10.1016/j.wear.2016.04.011

    Article  CAS  Google Scholar 

  7. Hutchings, I.M., Shipway, P.: Tribology. Friction and Wear of Engineering Materials. Presented at the (2017)

    Chapter  Google Scholar 

  8. Hutchings, I.M.: Tribological properties of metal matrix composites. Mater. Sci. Technol. 10(6), 513–517 (1994). https://doi.org/10.1179/mst.1994.10.6.513

    Article  CAS  Google Scholar 

  9. Correa, E.O., Alcântara, N.G., Tecco, D.G., Kumar, R.V.: The relationship between the microstructure and abrasive resistance of a hardfacing alloy in the Fe-Cr-C-Nb-V system. Metall. Mater. Trans. A 38(8), 1671–1680 (2007). https://doi.org/10.1007/s11661-007-9220-8

    Article  CAS  Google Scholar 

  10. Doǧan, Ö.N., Hawk, J.A.: Effect of carbide orientation on abrasion of high Cr white cast iron. Wear 189(1–2), 136–142 (1995). https://doi.org/10.1016/0043-1648(95)06682-9

    Article  Google Scholar 

  11. Coronado, J.J.: Effect of (Fe, Cr)7C3 carbide orientation on abrasion wear resistance and fracture toughness. Wear 270(3–4), 287–293 (2011). https://doi.org/10.1016/j.wear.2010.10.070

    Article  CAS  Google Scholar 

  12. Meacham, B.E., Marshall, M.C., Branagan, D.J.: Palmqvist fracture toughness of a new wear-resistant weld alloy. Metall. Mater. Trans. A 37(12), 3617–3627 (2006). https://doi.org/10.1007/s11661-006-1056-0

    Article  Google Scholar 

  13. Chotěborský, R.: Effect of heat treatment on the microstructure, hardness and abrasive wear resistance of high chromium hardfacing. Res. Agric. Eng. 59, 23–28 (2013)

    Article  Google Scholar 

  14. Bahoosh, M., Shahverdi, H.R., Farnia, A.: Macro-indentation fracture mechanisms in a super-hard hardfacing Fe-based electrode. Eng. Fail. Anal. 92, 480–494 (2018). https://doi.org/10.1016/j.engfailanal.2018.06.021

    Article  CAS  Google Scholar 

  15. ISO 28079: Hardmetals—Palmqvist Toughness Test. International Organization for Standardization, Geneva (2009)

    Google Scholar 

  16. Sarin, V.K., Llanes, L., Mari, D.: Comprehensive Hard Materials, vol. 1, pp. 304–320. Elsevier, Amsterdam (2014)

    Google Scholar 

  17. basic welding filler metal technology, lesson viii: hardsurfacing electrodes. ESAB Co. http://www.esabna.com/euweb/awtc/lesson8_1.htm. Accessed 1 July 2019

  18. Buchely, M.F., Gutierrez, J.C., León, L.M., Toro, A.: The effect of microstructure on abrasive wear of hardfacing alloys. Wear 259(1–6), 52–61 (2005). https://doi.org/10.1016/j.wear.2005.03.002

    Article  CAS  Google Scholar 

  19. Kirchgaßner, M., Badisch, E., Franek, F.: Behaviour of iron-based hardfacing alloys under abrasion and impact. Wear 265(5–6), 772–779 (2008). https://doi.org/10.1016/j.wear.2008.01.004

    Article  CAS  Google Scholar 

  20. Lin, C.-M., Chang, C.-M., Chen, J.-H., Wu, W.: Hardness, toughness and cracking systems of primary (Cr, Fe)23C6 and (Cr, Fe)7C3 carbides in high-carbon Cr-based alloys by indentation. Mater. Sci. Eng., A 527(18–19), 5038–5043 (2010). https://doi.org/10.1016/j.msea.2010.04.073

    Article  CAS  Google Scholar 

  21. Lee, S., Choo, S.-H., Kim, N.J., Baek, E.-R., Ahn, S.: Correlation of microstructure and fracture toughness in high-chromium white iron hardfacing alloys. Metall. Mater. Trans. A 27(12), 3881–3891 (1996). https://doi.org/10.1007/BF02595637

    Article  Google Scholar 

  22. Zhou, Y.F., Qin, G.K., Jiang, P.J., Wang, S.F., Qi, X.W., Xing, X.L., Yang, Q.X.: Dry sliding wear behavior of (Cr, Fe)7C3-γ(Cr, Fe) metal matrix composite (MMC) coatings: the influence of high volume fraction (Cr, Fe)7C3 carbide. Tribol. Lett. 66(3), 108 (2018). https://doi.org/10.1007/s11249-018-1053-7

    Article  CAS  Google Scholar 

  23. Polak, R., Ilo, S., Badisch, E.: Relation between inter-particle distance (L IPD) and abrasion in multiphase matrix-carbide materials. Tribol. Lett. 33(1), 29–35 (2009). https://doi.org/10.1007/s11249-008-9388-0

    Article  CAS  Google Scholar 

  24. Adamiak, M., Górka, J., Kik, T.: Comparison of abrasion resistance of selected constructional materials. J. Achiev. Mater. Manuf. Eng. 37(2), 375–380 (2009)

    Google Scholar 

  25. Dasgupta, R., Prasad, B.K., Modi, O.P., Jha, A.K.: A comparison of material removal mechanism under low stress abrasive condition of steel and hardfacing alloys. J. Mater. Eng. Perform. 8(4), 437–442 (1999). https://doi.org/10.1361/105994999770346738

    Article  CAS  Google Scholar 

  26. Tang, X.H., Li, L., Hinckley, B., Dolman, K., Parent, L., Li, D.Y.: Beneficial effects of the core-shell structure of primary carbides in high-Cr (45 wt%) white cast irons on their mechanical behavior and wear resistance. Tribol. Lett. 58(3), 44 (2015). https://doi.org/10.1007/s11249-015-0522-5

    Article  CAS  Google Scholar 

  27. Berns, H.: Comparison of wear resistant MMC and white cast iron. Wear 254(1–2), 47–54 (2003). https://doi.org/10.1016/S0043-1648(02)00300-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Shahverdi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (RAR 36753 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahoosh, M., Shahverdi, H.R. & Farnia, A. Abrasive Wear Behavior and Its Relation with the Macro-indentation Fracture Toughness of an Fe-Based Super-Hard Hardfacing Deposit. Tribol Lett 67, 100 (2019). https://doi.org/10.1007/s11249-019-1213-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1213-4

Keywords

Navigation