Advertisement

Tribology Letters

, 67:99 | Cite as

Tribological Performance of Graphene and PTFE Solid Lubricants for Polymer Coatings at Elevated Temperatures

  • Kian Bashandeh
  • Pixiang Lan
  • Jacob L. Meyer
  • Andreas A. PolycarpouEmail author
Original Paper
  • 113 Downloads

Abstract

Some tribological applications demand reliable operation over a wide range of temperatures and the absence of liquid lubrication. Under these circumstances, polymer composite coatings have been suggested as an alternative to liquid lubrication. This study investigates the tribological performance of an advanced high-bearing aromatic thermosetting polyester (ATSP) coating filled with well-known solid lubricants, namely polytetrafluoroethylene (PTFE) and graphene nanoplatelets (GNPs). Mechanical and thermo-mechanical properties of the coatings were measured using nanoindentation and dynamic mechanical analysis. The tribological performance was experimentally assessed using a flat pin-on-disk configuration from room temperature to 300 °C with dry sliding conditions. The results showed that the addition of GNPs and PTFE could significantly decrease the friction and improve the wear resistance of the composite coatings, compared to neat ATSP coating. Both composite coatings demonstrated enhanced tribological performance with the increase of temperature. However, at the most extreme condition of 300 °C, the GNPs outperformed the PTFE by reducing the friction and wear by 53% and 69%, respectively, compared to room temperature. Optical and scanning electron microscopy were employed to further examine the formation of transfer films and worn surfaces.

Keywords

PTFE High-temperature tribology Graphene Polymer coating composites 

Notes

References

  1. 1.
    Briscoe, B.J., Sinha, S.K.: Tribological applications of polymers and their composites: past, present and future prospects. Tribol. Interface Eng. Ser. 55, 1–14 (2008).  https://doi.org/10.1016/S1572-3364(08)55001-4 CrossRefGoogle Scholar
  2. 2.
    Sinha, S.K., Briscoe, B.J.: Polymer Tribology. Imperial College Press, London (2009)CrossRefGoogle Scholar
  3. 3.
    Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004).  https://doi.org/10.1023/B:TRIL.0000044487.32514.1d CrossRefGoogle Scholar
  4. 4.
    Liming, Z., Yongyao, L., Zhengwei, W., Xin, L., Yexiang, X.: A review on the large tilting pad thrust bearings in the hydropower units. Renew. Sustain. Energy Rev. 69, 1182–1198 (2017).  https://doi.org/10.1016/J.RSER.2016.09.140 CrossRefGoogle Scholar
  5. 5.
    Holmberg, K., Mathews, A.: Coatings tribology: a concept, critical aspects and future directions. Thin Solid Films 253, 173–178 (1994).  https://doi.org/10.1016/0040-6090(94)90315-8 CrossRefGoogle Scholar
  6. 6.
    Lan, P., Gheisari, R., Meyer, J.L., Polycarpou, A.A.: Tribological performance of aromatic thermosetting polyester (ATSP) coatings under cryogenic conditions. Wear 398–399, 47–55 (2018).  https://doi.org/10.1016/J.WEAR.2017.11.020 CrossRefGoogle Scholar
  7. 7.
    Holmberg, K., Matthews, A.: Coatings Tribology : Properties, Mechanisms, Techniques and Applications in Surface Engineering. Elsevier, Amsterdam (2009)Google Scholar
  8. 8.
    Friedrich, K.: Polymer composites for tribological applications. Adv. Ind. Eng. Polym. Res. 1, 3–39 (2018).  https://doi.org/10.1016/J.AIEPR.2018.05.001 CrossRefGoogle Scholar
  9. 9.
    Demas, N.G., Polycarpou, A.A.: Tribological performance of PTFE-based coatings for air-conditioning compressors. Surf. Coatings Technol. 203, 307–316 (2008).  https://doi.org/10.1016/J.SURFCOAT.2008.09.001 CrossRefGoogle Scholar
  10. 10.
    Nunez, E.E., Gheisari, R., Polycarpou, A.A.: Tribology review of blended bulk polymers and their coatings for high-load bearing applications. Tribol. Int. 129, 92–111 (2019).  https://doi.org/10.1016/J.TRIBOINT.2018.08.002 CrossRefGoogle Scholar
  11. 11.
    Cui, L.J., Geng, H.Z., Wang, W.Y., Chen, L.T., Gao, J.: Functionalization of multi-wall carbon nanotubes to reduce the coefficient of the friction and improve the wear resistance of multi-wall carbon nanotube/epoxy composites. Carbon N. Y. 54, 277–282 (2013).  https://doi.org/10.1016/J.CARBON.2012.11.039 CrossRefGoogle Scholar
  12. 12.
    Kasar, A.K., Menezes, P.L.: Synthesis and recent advances in tribological applications of graphene. Int. J. Adv. Manuf. Technol. 97, 3999–4019 (2018).  https://doi.org/10.1007/s00170-018-2019-5 CrossRefGoogle Scholar
  13. 13.
    Frich, D., Goranov, K., Schneggenburger, L., Economy, J.: Novel high-temperature aromatic copolyester thermosets: synthesis, characterization, and physical properties. Macromolecules 29, 7734–7739 (1996).  https://doi.org/10.1021/MA960862D CrossRefGoogle Scholar
  14. 14.
    Lan, P., Meyer, J.L., Economy, J., Polycarpou, A.A.: Unlubricated tribological performance of aromatic thermosetting polyester (ATSP) coatings under different temperature conditions. Tribol. Lett. 61, 10 (2016).  https://doi.org/10.1007/s11249-015-0621-3 CrossRefGoogle Scholar
  15. 15.
    Lan, P., Meyer, J.L., Vaezian, B., Polycarpou, A.A.: Advanced polymeric coatings for tilting pad bearings with application in the oil and gas industry. Wear 354–355, 10–20 (2016).  https://doi.org/10.1016/j.wear.2016.02.013 CrossRefGoogle Scholar
  16. 16.
    Akram, M.W., Meyer, J.L., Polycarpou, A.A.: Tribological interactions of advanced polymeric coatings with polyalkylene glycol lubricant and r1234yf refrigerant. Tribol. Int. 97, 200–211 (2016).  https://doi.org/10.1016/j.triboint.2016.01.026 CrossRefGoogle Scholar
  17. 17.
    Lan, P., Polychronopoulou, K., Zhang, Y., Polycarpou, A.A.: Three-body abrasive wear by (silica) sand of advanced polymeric coatings for tilting pad bearings. Wear 382–383, 40–50 (2017).  https://doi.org/10.1016/J.WEAR.2017.04.002 CrossRefGoogle Scholar
  18. 18.
    Lan, P., Polycarpou, A.A.: High temperature and high pressure tribological experiments of advanced polymeric coatings in the presence of drilling mud for oil & gas applications. Tribol. Int. 120, 218–225 (2018).  https://doi.org/10.1016/J.TRIBOINT.2017.12.035 CrossRefGoogle Scholar
  19. 19.
    Frich, D., Hall, A., Economy, J.: Nature of adhesive bonding via interchain transesterification reactions (ITR). Macromol. Chem. Phys. 199, 913–921 (1998).  https://doi.org/10.1002/(SICI)1521-3935(19980501)199:5%3c913:AID-MACP913%3e3.0.CO;2-3 CrossRefGoogle Scholar
  20. 20.
    Rudnick, L.R.: Lubricant Additives, 3rd edn. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar
  21. 21.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. In: Rodgers, P. (ed.) Nanoscience and Technology: a Collection of Reviews from Nature Journals, pp. 11–19. World Scientific, Singapore (2009)CrossRefGoogle Scholar
  22. 22.
    Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014).  https://doi.org/10.1016/J.MATTOD.2013.12.003 CrossRefGoogle Scholar
  23. 23.
    Zhai, W., Srikanth, N., Kong, L.B., Zhou, K.: Carbon nanomaterials in tribology. Carbon N. Y. 119, 150–171 (2017).  https://doi.org/10.1016/J.CARBON.2017.04.027 CrossRefGoogle Scholar
  24. 24.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).  https://doi.org/10.1126/science.1157996 CrossRefGoogle Scholar
  25. 25.
    Ghosh, S., Calizo, I., Teweldebrhan, D., Pokatilov, E.P., Nika, D.L., Balandin, A.A., Bao, W., Miao, F., Lau, C.N.: Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).  https://doi.org/10.1063/1.2907977 CrossRefGoogle Scholar
  26. 26.
    Masood, M.T., Papadopoulou, E.L., Heredia-Guerrero, J.A., Bayer, I.S., Athanassiou, A., Ceseracciu, L.: Graphene and polytetrafluoroethylene synergistically improve the tribological properties and adhesion of nylon 66 coatings. Carbon N. Y. 123, 26–33 (2017).  https://doi.org/10.1016/J.CARBON.2017.07.026 CrossRefGoogle Scholar
  27. 27.
    Liu, D., Zhao, W., Liu, S., Cen, Q., Xue, Q.: Comparative tribological and corrosion resistance properties of epoxy composite coatings reinforced with functionalized fullerene C60 and graphene. Surf. Coat Technol. 286, 354–364 (2016).  https://doi.org/10.1016/J.SURFCOAT.2015.12.056 CrossRefGoogle Scholar
  28. 28.
    Puértolas, J.A., Castro, M., Morris, J.A., Ríos, R., Ansón-Casaos, A.: Tribological and mechanical properties of graphene nanoplatelet/PEEK composites. Carbon N. Y. 141, 107–122 (2019).  https://doi.org/10.1016/J.CARBON.2018.09.036 CrossRefGoogle Scholar
  29. 29.
    Kandanur, S.S., Rafiee, M.A., Yavari, F., Schrameyer, M., Yu, Z.-Z., Blanchet, T.A., Koratkar, N.: Suppression of wear in graphene polymer composites. Carbon N. Y. 50, 3178–3183 (2012).  https://doi.org/10.1016/J.CARBON.2011.10.038 CrossRefGoogle Scholar
  30. 30.
    Bakir, M., Meyer, J.L., Sutrisno, A., Economy, J., Jasiuk, I.: Glass transition broadening via nanofiller-contiguous polymer network in aromatic thermosetting copolyester nanocomposites. J. Polym. Sci. Part B Polym. Phys. 56, 1595–1603 (2018).  https://doi.org/10.1002/polb.24747 CrossRefGoogle Scholar
  31. 31.
    Bakir, M., Elhebeary, M., Meyer, J.L., Sutrisno, A., Economy, J., Jasiuk, I.: Interfacial liquid crystalline mesophase domain on carbon nanofillers in aromatic thermosetting copolyester matrix. J. Appl. Polym. Sci. 135, 46584 (2018).  https://doi.org/10.1002/app.46584 CrossRefGoogle Scholar
  32. 32.
    Calleja, G., Jourdan, A., Ameduri, B., Habas, J.P.: Where is the glass transition temperature of poly(tetrafluoroethylene)? A new approach by dynamic rheometry and mechanical tests. Eur. Polym. J. 49, 2214–2222 (2013).  https://doi.org/10.1016/J.EURPOLYMJ.2013.04.028 CrossRefGoogle Scholar
  33. 33.
    Ebnesajjad, S., Morgan, R.: Fluoropolymer Additives. Elsevier, Amsterdam (2019)Google Scholar
  34. 34.
    Meyer, J.L., Bakir, M., Lan, P., Economy, J., Jasiuk, I., Bonhomme, G., Polycarpou, A.A.: Reversible bonding of aromatic thermosetting copolyesters for in-space assembly. Macromol. Mater. Eng. 304, 1800647 (2019).  https://doi.org/10.1002/mame.201800647 CrossRefGoogle Scholar
  35. 35.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  36. 36.
    Wang, H., Xie, G., Zhu, Z., Ying, Z., Zeng, Y.: Enhanced tribological performance of the multi-layer graphene filled poly(vinyl chloride) composites. Compos. Part A Appl. Sci. Manuf. 67, 268–273 (2014).  https://doi.org/10.1016/J.COMPOSITESA.2014.09.011 CrossRefGoogle Scholar
  37. 37.
    Chih, A., Ansón-Casaos, A., Puértolas, J.A.: Frictional and mechanical behaviour of graphene/UHMWPE composite coatings. Tribol. Int. 116, 295–302 (2017).  https://doi.org/10.1016/J.TRIBOINT.2017.07.027 CrossRefGoogle Scholar
  38. 38.
    Aliyu, I.K., Mohammed, A.S., Al-Qutub, A.: Tribological performance of UHMWPE/GNPs nanocomposite coatings for solid lubrication in bearing applications. Tribol. Lett. 66, 144 (2018).  https://doi.org/10.1007/s11249-018-1096-9 CrossRefGoogle Scholar
  39. 39.
    Greenwood, J.A., Williamson, J.P.: Contact of nominally flat surfaces. Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 295, 300–319 (1966).  https://doi.org/10.1098/rspa.1966.0242 CrossRefGoogle Scholar
  40. 40.
    Kim, K.S., Lee, H.J., Lee, C., Lee, S.K., Jang, H., Ahn, J.H., Kim, J.H., Lee, H.J.: Chemical vapor deposition-grown graphene: the thinnest solid lubricant. ACS Nano 5, 5107–5114 (2011).  https://doi.org/10.1021/nn2011865 CrossRefGoogle Scholar
  41. 41.
    Lahiri, D., Hec, F., Thiesse, M., Durygin, A., Zhang, C., Agarwal, A.: Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites. Tribol. Int. 70, 165–169 (2014).  https://doi.org/10.1016/J.TRIBOINT.2013.10.012 CrossRefGoogle Scholar
  42. 42.
    Bhushan, B.: Introduction to tribology. Wiley, Hoboken (2013)CrossRefGoogle Scholar
  43. 43.
    Liu, H., Li, Y., Wang, T., Wang, Q.: In situ synthesis and thermal, tribological properties of thermosetting polyimide/graphene oxide nanocomposites. J. Mater. Sci. 47, 1867–1874 (2012).  https://doi.org/10.1007/s10853-011-5975-9 CrossRefGoogle Scholar
  44. 44.
    Zhao, B., Bai, T.: Improving the tribological performance of epoxy coatings by the synergistic effect between dehydrated ethylenediamine modified graphene and polytetrafluoroethylene. Carbon N. Y. 144, 481–491 (2019).  https://doi.org/10.1016/J.CARBON.2018.12.092 CrossRefGoogle Scholar
  45. 45.
    Barletta, M.: Dry sliding wear response of some industrial powder coatings. Tribol. Int. 44, 1236–1250 (2011).  https://doi.org/10.1016/J.TRIBOINT.2011.06.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Kian Bashandeh
    • 1
  • Pixiang Lan
    • 2
  • Jacob L. Meyer
    • 2
  • Andreas A. Polycarpou
    • 1
    Email author
  1. 1.Department of Mechanical EngineeringTexas A&M UniversityCollege StationUSA
  2. 2.ATSP InnovationsChampaignUSA

Personalised recommendations