Matching Atomistic Simulations and In Situ Experiments to Investigate the Mechanics of Nanoscale Contact

A Correction to this article is available

This article has been updated


Many emerging devices and technologies rely on contacts between nanoscale bodies. Recent analytical theories, experiments, and simulations of nanocontacts have made conflicting predictions about the mechanical response as these contacts are loaded and separated. The present investigation combined in situ transmission electron microscopy (TEM) and molecular dynamics (MD) simulation to study the contact between a flat diamond indenter and a nanoscale silicon tip. The TEM was used to pre-characterize the materials, such that an atomistic model tip could be created with identically matched materials, geometry, crystallographic orientation, loading conditions, and degree of amorphization. A large work of adhesion was measured in the experiment and attributed to unpassivated surfaces and a large compressive stress applied before separation, resulting in covalent bonding across the interface. The simulations modeled atomic interactions across the interface using a Buckingham potential to reproduce the experimental work of adhesion without explicitly modeling covalent bonds, thereby enabling larger time- and length-scale simulations than would be achievable with a reactive potential. Then, the experimental and simulation tips were loaded under similar conditions with real-time measurement of contact area and deformation, yielding three primary findings. First, the results demonstrated that significant variation in the value of contact area can be obtained from simulations, depending on the technique used to determine it. Therefore, care is required in comparing measured values of contact area between simulations and experiments. Second, the contact area and deformation demonstrated significant hysteresis, with larger values measured upon unloading as compared to loading. Therefore, continuum predictions, in the form of a Maugis–Dugdale contact model, could not be fit to full loading/unloading curves. Third, the load-dependent contact area could be accurately fit by allowing the work of adhesion in the continuum model to increase with applied force from 1.3 to 4.3 J/m2. The most common mechanisms for hysteretic behavior—which are viscoelasticity, capillary interactions, and plasticity—can be ruled out using the TEM and atomistic characterization. Stress-dependent formation of covalent bonds is suggested as a physical mechanism to describe these findings, which is qualitatively consistent with trends in the areal density of in-contact atoms as measured in the simulation. The implications of these results for real-world nanoscale contacts are that significant hysteresis may cause significant and unexpected deviations in contact size, even for nominally elastic contacts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Change history

  • 23 December 2019

    In the original version of this paper, there is a typo in the last two sentences of section ���2.1 In Situ TEM Experimental Measurements���.


  1. 1.

    Chou, S.Y., Krauss, P.R., Renstrom, P.J.: Imprint of sub-25 nm vias and trenches in polymers. Appl. Phys. Lett. 67, 3114–3116 (1995)

    CAS  Article  Google Scholar 

  2. 2.

    Piner, R.D., Zhu, J., Xu, F., Hong, S., Mirkin, C.A.A.: “Dip-Pen” nanolithography. Science 283, 661–663 (1999)

    CAS  Article  Google Scholar 

  3. 3.

    Kim, T.-H., Chung, D.-Y., Ku, J., Song, I., Sul, S., Kim, D.-H., Cho, K.-S., Choi, B.L., Min Kim, J., Hwang, S., Kim, K.: Heterogeneous stacking of nanodot monolayers by dry pick-and-place transfer and its applications in quantum dot light-emitting diodes. Nat. Commun. 4, 2637 (2013)

    Article  Google Scholar 

  4. 4.

    Majumdar, A.: Scanning thermal microscopy. Annu. Rev. Mater. Sci. 29, 505–585 (1999)

    CAS  Article  Google Scholar 

  5. 5.

    Park, J.Y., Maier, S., Hendriksen, B., Salmeron, M.: Sensing current and forces with SPM. Mater. Today 13, 38–45 (2010)

    CAS  Article  Google Scholar 

  6. 6.

    Rebeiz, G.M., Muldavin, J.B.: RF MEMS switches and switch circuits. IEEE Microw. Mag. 2, 59–71 (2001).

    Article  Google Scholar 

  7. 7.

    Loh, O.Y., Espinosa, H.D.: Nanoelectromechanical contact switches. Nat. Nanotechnol. 7, 283–295 (2012).

    CAS  Article  Google Scholar 

  8. 8.

    Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992).

    CAS  Article  Google Scholar 

  9. 9.

    Hertz, H.: On the contact of elastic solids. J. Reine Angew. Math. 92, 110 (1881)

    Google Scholar 

  10. 10.

    Derjaguin, B.V., Muller, V.M., Toporov, Y.P.: Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975)

    CAS  Article  Google Scholar 

  11. 11.

    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)

    CAS  Article  Google Scholar 

  12. 12.

    Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)

    CAS  Article  Google Scholar 

  13. 13.

    Carpick, R.W., Ogletree, D.F., Salmeron, M.: A general equation for fitting contact area and friction vs load measurements. J. Colloid Interface Sci. 211, 395–400 (1999)

    CAS  Article  Google Scholar 

  14. 14.

    Piétrement, O., Troyon, M.: General equations describing elastic indentation depth and normal contact stiffness versus load. J. Colloid Interface Sci. 226, 166–171 (2000)

    Article  Google Scholar 

  15. 15.

    Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31, 030801 (2013)

    Article  Google Scholar 

  16. 16.

    Chandross, M., Lorenz, C.D., Stevens, M.J., Grest, G.S.: Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240–1246 (2008)

    CAS  Article  Google Scholar 

  17. 17.

    Brukman, M.J., Gao, G., Nemanich, R.J., Harrison, J.A.: Temperature dependence of single-asperity diamond–diamond friction elucidated using AFM and MD simulations. J. Phys. Chem. C 112, 9358–9369 (2008)

    CAS  Article  Google Scholar 

  18. 18.

    Li, Q., Dong, Y., Perez, D., Martini, A., Carpick, R.W.: Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106, 126101 (2011)

    Article  Google Scholar 

  19. 19.

    Vahdat, V., Ryan, K.E., Keating, P.L., Jiang, Y., Adiga, S.P., Schall, J.D., Turner, K.T., Harrison, J.A., Carpick, R.W.: Atomic-scale wear of amorphous hydrogenated carbon during intermittent contact: a combined study using experiment, simulation, and theory. ACS Nano 8, 7027–7040 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Mo, Y., Szlufarska, I.: Roughness picture of friction in dry nanoscale contacts. Phys. Rev. B 81, 35405 (2010)

    Article  Google Scholar 

  21. 21.

    Reedy, E.D.: Thin-coating contact mechanics with adhesion. J. Mater. Res. 21, 2660–2668 (2011)

    Article  Google Scholar 

  22. 22.

    Milne, Z.B., Schall, J.D., Jacobs, T.D.B., Harrison, J.A., Carpick, R.W.: Covalent bonding and atomic-level plasticity increase adhesion in silicon-diamond nanocontacts. Submitted. (2019)

  23. 23.

    Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005)

    CAS  Article  Google Scholar 

  24. 24.

    Luan, B.Q., Robbins, M.O.: Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations. Phys. Rev. E 74, 026111 (2006).

    CAS  Article  Google Scholar 

  25. 25.

    Cha, P.-R., Srolovitz, D.J., Vanderlick, T.K.: Molecular dynamics simulation of single asperity contact. Acta Mater. 55, 3983–3996 (2004)

    Article  Google Scholar 

  26. 26.

    Szlufarska, I., Chandross, M., Carpick, R.W.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)

    Article  Google Scholar 

  27. 27.

    Ryan, K.E., Keating, P.L., Jacobs, T.D.B., Grierson, D.S., Turner, K.T., Carpick, R.W., Harrison, J.A.: Simulated adhesion between realistic hydrocarbon materials: effects of composition, roughness, and contact point. Langmuir 30, 2028–2037 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)

    CAS  Article  Google Scholar 

  29. 29.

    Solhjoo, S., Vakis, A.I.: Definition and detection of contact in atomistic simulations. Comput. Mater. Sci. 109, 172–182 (2015)

    CAS  Article  Google Scholar 

  30. 30.

    Jacobs, T.D.B., Martini, A.: Measuring and understanding contact area at the nanoscale: a review. Appl. Mech. Rev. 69, 060802 (2017).

    Article  Google Scholar 

  31. 31.

    Carpick, R.W., Agrait, N., Ogletree, D.F., Salmeron, M.: Variation of the interfacial shear strength and adhesion of a nanometer-sized contact. Langmuir 12, 3334–3340 (1996)

    CAS  Article  Google Scholar 

  32. 32.

    Enachescu, M., van den Oetelaar, R.J.A., Carpick, R.W., Ogletree, D.F., Flipse, C.F.J., Salmeron, M.: Atomic force microscopy study of an ideally hard contact: the diamond(111) tungsten carbide interface. Phys. Rev. Lett. 81, 1877–1880 (1998)

    CAS  Article  Google Scholar 

  33. 33.

    Carpick, R.W., Agrait, N., Ogletree, D.F., Salmeron, M.: Measurement of interfacial shear (friction) with an ultrahigh vacuum atomic force microscope. J. Vac. Sci. Technol. B 14, 1289–1295 (1996)

    CAS  Article  Google Scholar 

  34. 34.

    Minor, A.M., Lilleodden, E.T., Jin, M., Stach, E.A., Chrzan, D.C., Morris, J.W.: Room temperature dislocation plasticity in silicon. Philos. Mag. 85, 323–330 (2005)

    CAS  Article  Google Scholar 

  35. 35.

    Unertl, W.N.: Implications of contact mechanics models for mechanical properties measurements using scanning force microscopy. J. Vac. Sci. Technol. A 17, 1779 (1999)

    CAS  Article  Google Scholar 

  36. 36.

    Espinosa, H.D., Bernal, R.A., Minary-Jolandan, M.: A review of mechanical and electromechanical properties of piezoelectric nanowires. Adv. Mater. 24, 4656–4675 (2012).

    CAS  Article  Google Scholar 

  37. 37.

    Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108–112 (2013).

    CAS  Article  Google Scholar 

  38. 38.

    Vishnubhotla, S.B., Chen, R., Khanal, S.R., Martini, A., Jacobs, T.D.B.: Understanding contact between platinum nanocontacts at low loads: the effect of reversible plasticity. Nanotechnology 30, 035704 (2019).

    CAS  Article  Google Scholar 

  39. 39.

    Vishnubhotla, S.B., Chen, R., Khanal, S.R., Li, J., Stach, E.A., Martini, A., Jacobs, T.D.B.: Quantitative measurement of contact area and electrical transport across platinum nanocontacts for scanning probe microscopy and electrical nanodevices. Nanotechnology 30, 045705 (2019).

    CAS  Article  Google Scholar 

  40. 40.

    Jacobs, T.D.B., Lefever, J.A., Carpick, R.W.: Measurement of the length and strength of adhesive interactions in a nanoscale silicon–diamond interface. Adv. Mater. Interfaces. 2, 1400547 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Williams, D.B., Carter, C.B.: The Transmission Electron Microscope. Springer, Boston (1996)

    Google Scholar 

  42. 42.

    Kailer, A., Gogotsi, Y.G., Nickel, K.G.: Phase transformations of silicon caused by contact loading. J. Appl. Phys. 81, 3057–3063 (1997)

    CAS  Article  Google Scholar 

  43. 43.

    Liu, J., Notbohm, J.K., Carpick, R.W., Turner, K.T.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4, 3763–3772 (2010).

    CAS  Article  Google Scholar 

  44. 44.

    Johnson, K.L.: Contact Mechanics. Cambridge University Press, London (2011)

    Google Scholar 

  45. 45.

    Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  46. 46.

    Kumagai, T., Izumi, S., Hara, S., Sakai, S.: Development of bond-order potentials that can reproduce the elastic constants and melting point of silicon for classical molecular dynamics simulation. Comput. Mater. Sci. 39, 457–464 (2007).

    CAS  Article  Google Scholar 

  47. 47.

    Guo, Q., Izumisawa, S., Phillips, D.M., Jhon, M.S.: Surface morphology and molecular conformation for ultrathin lubricant films with functional end groups. J. Appl. Phys. 93, 8707–8709 (2003)

    CAS  Article  Google Scholar 

  48. 48.

    Yi, T., Ramasamy, U.S., Lichter, S., Martini, A.: Stability and structure of nanometer-thin perfluoropolyether films using molecular simulations. Tribol. Lett. 54, 119–127 (2014)

    CAS  Article  Google Scholar 

  49. 49.

    Cottrell, T.L.: The Strengths of Chemical Bonds. Butterworth, London (1958)

    Google Scholar 

  50. 50.

    Grierson, D.S., Flater, E.E., Carpick, R.W.: Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)

    CAS  Article  Google Scholar 

  51. 51.

    Katainen, J., Paajanen, M., Ahtola, E., Pore, V., Lahtinen, J.: Adhesion as an interplay between particle size and surface roughness. J. Colloid Interface Sci. 304, 524–529 (2006)

    CAS  Article  Google Scholar 

  52. 52.

    Liu, D.L., Martin, J., Burnham, N.A.: Optimal roughness for minimal adhesion. Appl. Phys. Lett. 91, 043107 (2007)

    Article  Google Scholar 

  53. 53.

    Grierson, D.S., Liu, J., Carpick, R.W., Turner, K.T.: Adhesion of nanoscale asperities with power-law profiles. J. Mech. Phys. Solids 61, 597–610 (2013)

    CAS  Article  Google Scholar 

  54. 54.

    Moore, N.W., Houston, J.E.: The pull-off force and the work of adhesion: new challenges at the nanoscale. J. Adhes. Sci. Technol. 24, 2531–2544 (2010)

    CAS  Article  Google Scholar 

  55. 55.

    Sumant, A.V., Grierson, D.S., Gerbi, J.E., Birrell, J., Lanke, U.D., Auciello, O., Carlisle, J.A., Carpick, R.W.: Toward the ultimate tribological interface: surface chemistry and nanotribology of ultrananocrystalline diamond. Adv. Mater. 17, 1039–1045 (2005)

    CAS  Article  Google Scholar 

  56. 56.

    Sumant, A., Grierson, D., Gerbi, J., Carlisle, J., Auciello, O., Carpick, R.: Surface chemistry and bonding configuration of ultrananocrystalline diamond surfaces and their effects on nanotribological properties. Phys. Rev. B 76, 235429 (2007)

    Article  Google Scholar 

  57. 57.

    Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Elsevier, San Francisco (2010)

    Google Scholar 

  58. 58.

    Burnham, N.A., Colton, R.J., Pollock, H.M.: Interpretation issues in force microscopy. J. Vac. Sci. Technol. A 9, 2548 (1991).

    CAS  Article  Google Scholar 

  59. 59.

    Cheng, S., Robbins, M.O.: Defining contact at the atomic scale. Tribol. Lett. 39, 329–348 (2010)

    Article  Google Scholar 

  60. 60.

    Cheng, S., Luan, B., Robbins, M.O.: Contact and friction of nanoasperities: effects of adsorbed monolayers. Phys. Rev. E 81, 016102 (2010)

    Article  Google Scholar 

  61. 61.

    McSkimin, H.J.: Elastic moduli of diamond as a function of pressure and temperature. J. Appl. Phys. 43, 2944 (1972)

    CAS  Article  Google Scholar 

  62. 62.

    Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the young’s modulus of silicon? J. Microelectromech. Syst. 19, 229–238 (2010)

    CAS  Article  Google Scholar 

  63. 63.

    Chen, R., Vishnubhotla, S.B., Jacobs, T.D.B., Martini, A.: Simulations of the effect of an oxide on contact area measurements from conductive atomic force microscopy. Nanoscale 11, 1029–1036 (2019)

    CAS  Article  Google Scholar 

  64. 64.

    De Boer, M.P., Knapp, J.A., Michalske, T.A., Srinivasan, U., Maboudian, R.: Adhesion hysteresis of silane coated microcantilevers. Acta Mater. 48, 4531–4541 (2000).

    Article  Google Scholar 

  65. 65.

    Attard, P.: Interaction and deformation of viscoelastic particles: nonadhesive particles. Phys. Rev. E 63, 61604 (2001)

    CAS  Article  Google Scholar 

  66. 66.

    Chen, Y.L., Helm, C.A., Israelachvili, J.N.: Molecular mechanisms associated with adhesion and contact angle hysteresis of monolayer surfaces. J. Phys. Chem. 95, 10736–10747 (1991)

    CAS  Article  Google Scholar 

  67. 67.

    Horn, R.G., Israelachvili, J.N., Pribac, F.: Measurement of the deformation and adhesion of solids in contact. J. Colloid Interface Sci. 115, 480–492 (1987)

    CAS  Article  Google Scholar 

Download references


The authors acknowledge support from the National Science Foundation under awards CMMI-1536800 and CMMI-1537613. AM and XH further acknowledge the support of the Air Force Office of Scientific Research (AFOSR) Award No. FA9550-15-1-0256.

Author information



Corresponding author

Correspondence to Tevis D. B. Jacobs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vishnubhotla, S.B., Chen, R., Khanal, S.R. et al. Matching Atomistic Simulations and In Situ Experiments to Investigate the Mechanics of Nanoscale Contact. Tribol Lett 67, 97 (2019).

Download citation


  • Nanoscale contact
  • Adhesion
  • In situ TEM
  • Molecular dynamics simulation