Tribology Letters

, 67:93 | Cite as

Tribochemical Mechanisms of Trimethyl and Triethyl Phosphite on Oxidized Iron in Ultrahigh Vacuum

  • Resham Rana
  • Wilfred TysoeEmail author
Original Paper


The surface chemistry of model lubricant additives, trimethyl phosphite (TMPi) and triethyl phosphite (TEPi), is studied on oxidized iron in ultrahigh vacuum (UHV) and the results compared with the gas-phase lubrication of TEPi on oxidized iron in a UHV tribometer. Oxide films are grown on a polycrystalline iron substrate and characterized by X-ray photoelectron spectroscopy (XPS) and assigned to the formation of an Fe3O4 film. Measurements of the friction coefficient and contact resistance of the oxide films show that the oxide film remains intact while rubbing in UHV at a normal load of 0.29 N. It is found that phosphite esters adsorb on the oxide by electron donation to the phosphorus atom, with a binding energy that increases in the order tributyl phosphite > TMPi > TEPi, and correlates well with the location of the vacant lowest-occupied molecular orbital (LUMO) energy. The phosphite esters decompose via sequential P‒O bond scission to form adsorbed alkoxy species, which then react on the surface either by hydrogen addition to form the corresponding alcohol, or by hydrogen abstraction to yield an aldehyde. XPS studies of the surface shows that essentially no carbon remains after the TMPi has reacted, while a small amount of carbon is present when TEPi has decomposed. On heating, the phosphite esters convert to phosphate species. Gas-phase lubrication experiments in the presence of 1 × 10−7 Torr of gas-phase TEPi reveal that the friction coefficient is significantly reduced, where the friction reduction is found to increase with increasing reaction temperature. The friction reduction correlates well with the proportion of phosphate product formed in the film and indicates that the formation of phosphate tribofilm is primarily responsible for reducing friction. However, friction is also reduced for a reaction at ~ 300 K, lower than the temperature at which the adsorbed phosphite ester reacts, suggesting that its rate of decomposition could be accelerated by interfacial shear.


Trimethyl phosphite Triethyl phosphite Temperature-programmed desorption X-ray photoelectron spectroscopy Ultrahigh vacuum tribometer Tribochemistry 



We thank the National Science Foundation for support of this work under Grant Number CMMI-1265742.


  1. 1.
    Mang, T., Dresel, W.: Lubricants and Lubrications. Wiley-VCH, Weinheim, New York, Chichester (2001)Google Scholar
  2. 2.
    Rudnick, L.R.: Lubricant Additives: Chemistry and Applications. M. Dekker, New York (2003)CrossRefGoogle Scholar
  3. 3.
    Johnson, D.W., Hils, J.E.: Phosphate esters, thiophosphate esters and metal thiophosphates as lubricant additives. Lubricants 1, 132 (2013)CrossRefGoogle Scholar
  4. 4.
    Saba, C.S., Forster, N.H.: Reactions of aromatic phosphate esters with metals and their oxides. Tribol. Lett. 12, 135–146 (2002)CrossRefGoogle Scholar
  5. 5.
    Gauthier, A., Montes, H., Georges, J.M.: Boundary lubrication with tricresylphosphate (TCP). Importance of corrosive wear. ASLE Trans. 25, 445–455 (1982)CrossRefGoogle Scholar
  6. 6.
    Yamamoto, Y., Hirano, F.: The effect of the addition of phosphate esters to paraffinic base oils on their lubricating performance under sliding conditions. Wear 78, 285–296 (1982)CrossRefGoogle Scholar
  7. 7.
    Placek, D.G., Shankwalkar, S.G.: Phosphate ester surface treatment for reduced wear and corrosion protection. Wear 173, 207–217 (1994)CrossRefGoogle Scholar
  8. 8.
    Forbes, E.S.: The load-carrying action of organo-sulphur compounds—a review. Wear 15, 87–96 (1970)CrossRefGoogle Scholar
  9. 9.
    Najman, M.N., Kasrai, M., Bancroft, G.M., Miller, A.: Study of the chemistry of films generated from phosphate ester additives on 52100 steel using X-ray absorption spectroscopy. Tribol. Lett. 13, 209–218 (2002)CrossRefGoogle Scholar
  10. 10.
    Holbert, A.W., Batteas, J.D., Wong-Foy, A., Rufael, T.S., Friend, C.M.: Passivation of Fe(110) via phosphorus deposition: the reactions of trimethylphosphite. Surf. Sci. 401, L437–L443 (1998)CrossRefGoogle Scholar
  11. 11.
    Ren, D., Gellman, A.: Initial steps in the surface chemistry of vapor phase lubrication by organophosphorus compounds. Tribol. Lett. 6, 191–194 (1999)CrossRefGoogle Scholar
  12. 12.
    Ren, D., Gellman, A.J.: The carbon deposition mechanism in vapor phase lubrication. Tribol. Trans. 43, 480–488 (2000)CrossRefGoogle Scholar
  13. 13.
    Ren, D., Gellman, A.J.: Reaction mechanisms in organophosphate vapor phase lubrication of metal surfaces. Tribol. Int. 34, 353–365 (2001)CrossRefGoogle Scholar
  14. 14.
    Sung, D., Gellman, A.J.: The surface chemistry of alkyl and arylphosphate vapor phase lubricants on Fe foil. Tribol. Int. 35, 579–590 (2002)CrossRefGoogle Scholar
  15. 15.
    Gao, F., Furlong, O., Kotvis, P.V., Tysoe, W.T.: Reaction of tributyl phosphite with oxidized iron: surface and tribological chemistry. Langmuir 20, 7557–7568 (2004)CrossRefGoogle Scholar
  16. 16.
    Gao, F., Kotvis, P.V., Stacchiola, D., Tysoe, W.T.: Reaction of tributyl phosphate with oxidized iron: surface chemistry and tribological significance. Tribol. Lett. 18, 377–384 (2005)CrossRefGoogle Scholar
  17. 17.
    Philippon, D., de Barros-Bouchet, M.I., Mogne, T.L., Gresser, E., Martin, J.M.: Experimental simulation of phosphites additives tribochemical reactions by gas phase lubrication. Tribology 1, 113–123 (2007)Google Scholar
  18. 18.
    Philippon, D., De Barros-Bouchet, M.I., Le Mogne, T., Lerasle, O., Bouffet, A., Martin, J.M.: Role of nascent metallic surfaces on the tribochemistry of phosphite lubricant additives. Tribol. Int. 44, 684–691 (2011)CrossRefGoogle Scholar
  19. 19.
    De Barros-Bouchet, M.I., Righi, M.C., Philippon, D., Mambingo-Doumbe, S., Le-Mogne, T., Martin, J.M., et al.: Tribochemistry of phosphorus additives: experiments and first-principles calculations. RSC Adv. 5, 49270–49279 (2015)CrossRefGoogle Scholar
  20. 20.
    Yamamoto, Y., Hirano, F.: Effect of different phosphate esters on frictional characteristics. Tribol. Int. 13, 165–169 (1980)CrossRefGoogle Scholar
  21. 21.
    Shirley, D.A.: High-resolution X-Ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714 (1972)CrossRefGoogle Scholar
  22. 22.
    Gao, F., Kotvis, P.V., Tysoe, W.T.: The frictional properties of thin inorganic halide films on iron measured in ultrahigh vacuum. Tribol. Lett. 15, 327–332 (2003)CrossRefGoogle Scholar
  23. 23.
    Langell, M., Somorjai, G.A.: The composition and structure of oxide films grown on the (110) crystal face of iron. J. Vac. Sci. Technol. 21, 858–866 (1982)CrossRefGoogle Scholar
  24. 24.
    Sanchez, R.M.T., Curt, E.M., Volzone, C., Mercader, R.C., Cavalieri, A.L.: Study of Fe(II) oxidation in ground magnetite. Mater. Res. Bull. 25, 553–561 (1990)CrossRefGoogle Scholar
  25. 25.
    Allen, G.C., Hallam, K.R.: Characterisation of the spinels MxCo1−xFe2O4 (M = Mn, Fe or Ni) using X-ray photoelectron spectroscopy. Appl. Surf. Sci. 93, 25–30 (1996)CrossRefGoogle Scholar
  26. 26.
    Wu, X., Cong, P., Nanao, H., Minami, I., Mori, S.: Tribological behaviors of 52100 steel in carbon dioxide atmosphere. Tribol. Lett. 17, 925–930 (2004)CrossRefGoogle Scholar
  27. 27.
    Philippon, D., De Barros-Bouchet, M.I., Lerasle, O., Le Mogne, T., Martin, J.M.: Experimental simulation of tribochemical reactions between borates esters and steel surface. Tribol. Lett. 41, 73–82 (2011)CrossRefGoogle Scholar
  28. 28.
    Redhead, P.A.: Thermal desorption of gases. Vacuum 12, 203–211 (1962)CrossRefGoogle Scholar
  29. 29.
    Rufael, T.S., Batteas, J.D., Friend, C.M.: The influence of surface oxidation on the reactions of methanol on Fe(110). Surf. Sci. 384, 156–167 (1997)CrossRefGoogle Scholar
  30. 30.
    Myers, C.E., Franzen, H.F., Anderegg, J.W.: X-ray photoelectron spectra and bonding in transition-metal phosphides. Inorg. Chem. 24, 1822–1824 (1985)CrossRefGoogle Scholar
  31. 31.
    Barbaux, Y., Dekiouk, M., Le Maguer, D., Gengembre, L., Huchette, D., Grimblot, J.: Bulk and surface analysis of a Fe-P-O oxydehydrogenation catalyst. Appl. Catal. A 90, 51–60 (1992)CrossRefGoogle Scholar
  32. 32.
    Grosseau-Poussard, J.L., Panicaud, B., Pedraza, F., Renault, P.O., Silvain, J.F.: Iron oxidation under the influence of phosphate thin films. J. Appl. Phys. 94, 784–788 (2003)CrossRefGoogle Scholar
  33. 33.
    Marasinghe, G.K., Karabulut, M., Ray, C.S., Day, D.E., Shumsky, M.G., Yelon, W.B., et al.: Structural features of iron phosphate glasses. J. Non-Cryst. Solids 222, 144–152 (1997)CrossRefGoogle Scholar
  34. 34.
    Nooney, M.G., Murrell, T.S., Corneille, J.S., Rusert, E.I., Hossner, L.R., Goodman, D.W.: A spectroscopic investigation of phosphate adsorption onto iron oxides. J. Vac. Sci. Technol. A 14, 1357–1361 (1996)CrossRefGoogle Scholar
  35. 35.
    Wagner, C.D., Muilenberg, G.E.: Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-ray Photoelectron Spectroscopy. Perkin-Elmer Corp., Eden Prairie (1979)Google Scholar
  36. 36.
    Adams, H., Miller, B.P., Kotvis, P.V., Furlong, O.J., Martini, A., Tysoe, W.T.: In situ measurements of boundary film formation pathways and kinetics: dimethyl and diethyl disulfide on copper. Tribol. Lett. 62, 1–9 (2016)CrossRefGoogle Scholar
  37. 37.
    Adams, H., Miller, B.P., Furlong, O.J., Fantauzzi, M., Navarra, G., Rossi, A., et al.: Modeling mechanochemical reaction mechanisms. ACS Appl. Mater. Interfaces 9, 26531–26538 (2017)CrossRefGoogle Scholar
  38. 38.
    Miller, B., Kotvis, P., Furlong, O., Tysoe, W.: Relating molecular structure to tribological chemistry: borate esters on copper. Tribol. Lett. 49, 21–29 (2013)CrossRefGoogle Scholar
  39. 39.
    Righi, M.C., Loehlé, S., de Barros Bouchet, M.I., Philippon, D.: Martin JM (2015) Trimethyl-phosphite dissociative adsorption on iron by combined first-principle calculations and XPS experiments. RSC Adv. 5, 101162–101168 (2015)CrossRefGoogle Scholar
  40. 40.
    Tolman, C.A.: Electron donor-acceptor properties of phosphorus ligands. Substituent additivity. J. Am. Chem. Soc. 92, 2953–2956 (1970)CrossRefGoogle Scholar
  41. 41.
    Han, Y.-K., Yoo, J., Yim, T.: Why is tris(trimethylsilyl) phosphite effective as an additive for high-voltage lithium-ion batteries? J. Mater. Chem. A 3, 10900–10909 (2015)CrossRefGoogle Scholar
  42. 42.
    Murase, A., Ohmori, T.: ToF-SIMS analysis of phosphate-type lubricant additives adsorbed on friction surfaces of ferrous materials. Surf. Interface Anal. 31, 93–98 (2001)CrossRefGoogle Scholar
  43. 43.
    Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348, 102–106 (2015)CrossRefGoogle Scholar
  44. 44.
    Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63, 1–15 (2016)CrossRefGoogle Scholar
  45. 45.
    Riga, A., Cahoon, J., Pistillo, W.R.: Organophosphorus chemistry structure and performance relationships in FZG gear tests. Tribol. Lett. 9, 219–225 (2001)CrossRefGoogle Scholar
  46. 46.
    Najman, M.N., Kasrai, M., Bancroft, G.M.: Chemistry of antiwear films from ashless thiophosphate oil additives. Tribol. Lett. 17, 217–229 (2004)CrossRefGoogle Scholar
  47. 47.
    Sung, D., Gellman, A.J.: Thermal decomposition of tricresylphosphate isomers on Fe. Tribol. Lett. 13, 9–14 (2002)CrossRefGoogle Scholar
  48. 48.
    Osei-Agyemang, E., Berkebile, S., Martini, A.: Decomposition mechanisms of anti-wear lubricant additive tricresyl phosphate on iron surfaces using DFT and atomistic thermodynamic studies. Tribol. Lett. 66, 48 (2018)CrossRefGoogle Scholar
  49. 49.
    Adams, H.L., Garvey, M.T., Ramasamy, U.S., Ye, Z., Martini, A., Tysoe, W.T.: shear-induced mechanochemistry: pushing molecules around. J. Phys. Chem. C 119, 7115–7123 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of Wisconsin-MilwaukeeMilwaukeeUSA

Personalised recommendations