Skip to main content

Advertisement

Log in

Tribological Behavior of Restorative Dental Microcomposites After Exposure to Mouth Acids

Tribology Letters Aims and scope Submit manuscript

Abstract

In this work, the effect of the exposure to acids that are usually present in the mouth environment on the tribological behavior of restorative dental microcomposites is evaluated. A commercial microcomposite widely used in dentistry (Filtek Z250) and a strong and a week acid that are part of the mouth environment (hydrochloric and lactic acid, respectively) were chosen for the study. Samples of the microcomposite were exposed to each acid for two different periods: 1 day and 7 days, respectively. It was observed that the exposure to both acids lead to an increase of the surface roughness, especially in the samples that contacted for the shorter period with hydrochloric acid, and the same trend was observed in what concerns the coefficient of friction. Concomitantly, the resins’ microhardness suffered a small decreased after exposure to both acids. However, it was observed that the wear resistance of the microcomposite is only affected in a statistically significant manner after the exposition to the hydrochloric acid solution. Atomic force microscopy observation of the worn regions enables to attribute the decrease of the wear resistance of the material after the exposure to the strong acid to the detachment of the resin’s filler microparticles of silica and zirconia caused by the corrosive action of the strong acid. The results strongly suggest that the exposure to acids affects the dental resins’ tribomechanical performance which may compromise the restorations’ lifetime, especially in the case of exposure to the strong acids, such as hydrochloric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Münchow, E.A., Ferreira, A.C.A., Machado, R.M.M., Ramos, S., Rodrigues-junior, S.A., Zanchi, C.H.: Effect of acidic solutions on the surface degradation of a micro-hybrid composite resin. Braz. Dent. J. 25, 321–326 (2014)

    Article  Google Scholar 

  2. Sideridou, I.D., Karabela, M.M.: Sorption of water, ethanol or ethanol/water solutions by light-cured dental dimethacrylate resins. Dent. Mater. 27, 1003–1010 (2011)

    Article  CAS  Google Scholar 

  3. Hashemikamangar, S.S., Pourhashemi, S.J., Talebi, M., Kiomarsi, N., Kharazifard, M.J.: Effect of organic acids in dental biofilm on microhardness of a silorane-based composite. Restor. Dent. Endod. 40, 188–194 (2015)

    Article  Google Scholar 

  4. Hengtrakool, C., Kukiattrakoon, B.: Effect of naturally acidic agents on microhardness and surface micromorphology of restorative materials. Eur. J. Dent. 5, 89–100 (2011)

    Google Scholar 

  5. Correr, G.M., Caroline, R., Alonso, B., Baratto-filho, F., Correr-sobrinho, L., Alexandre, M., Sinhoreti, C., Puppin-rontani, R.M.: In vitro long-term degradation of aesthetic restorative materials in food-simulating media. Acta Odontol. Scand. 70, 101–108 (2012)

    Article  CAS  Google Scholar 

  6. Correr, G.M., Caroline, R., Alonso, B., Sobrinho, C., Puppin-rontani, R.M., Ferracane, J.L.: In vitro wear of resin-based materials—simultaneous corrosive and abrasive wear. J. Biomed. Mater. Res. B. 78, 105–114 (2005)

    Google Scholar 

  7. Fan, H., Gan, X., Liu, Y., Zhu, Z., Yu, H.: The nanomechanical and tribological properties of restorative dental composites after exposure in different types of media. J. Nanomater. 2, 1–9 (2014)

    Google Scholar 

  8. Distler, W.: The acid pattern in human dental plaque. J. Dent. Res. 62, 1–6 (1983)

    Article  Google Scholar 

  9. Staufenbiel, I., Adam, K., Deac, A., Geurtsen, W., Günay, H.: Influence of fruit consumption and fluoride application on the prevalence of caries and erosion in vegetarians: a controlled clinical trial. Eur. J. Clin. Nutr. 69, 1156–1160 (2015)

    Article  CAS  Google Scholar 

  10. El-serag, H.B., Sweet, S., Winchester, C.C., Dent, J.: Update on the epidemiology of gastro-oesophageal reflux disease: a systematic review. Gut 63, 871–880 (2014)

    Article  Google Scholar 

  11. Herbella, F.A., Patti, M.G., Herbella, F.A., Patti, M.G.: Gastroesophageal reflux disease: from pathophysiology to treatment. World J. Gastroenterol. 16, 3745–3749 (2010)

    Article  Google Scholar 

  12. Menezes, M.A., Herbella, F.A.M.: Pathophysiology of gastroesophageal reflux disease. World J. Surg. 41, 1666–1671 (2017)

    Article  Google Scholar 

  13. Baracco, B., Perdigão, J., Cabrera, E., Ceballos, L.: Two-year clinical performance of a low-shrinkage composite in posterior restorations. Oper. Dent. 38, 591–600 (2013)

    Article  CAS  Google Scholar 

  14. Filtek Z250: Technical product profile, pp. 1–32 (1998)

  15. Yılmaz, E.C., Sadeler, R.: Investigation of three-body wear of dental materials under different chewing cycles. Sci. Eng. Compos. Mater. 25, 1–7 (2018)

    Article  Google Scholar 

  16. Sadat, S., Pourhashemi, S.J., Talebi, M., Kiomarsi, N., Javad, M.: Effect of organic acids in dental biofilm on microhardness of a silorane-based composite. Restor. Dent. Endod. 7658, 188–194 (2015)

    Google Scholar 

  17. Prioteasa, P., Ibris, N., Visan, T.: The influence of chemical nature on the corrosion behaviour of some dental alloys in Fusayama–Meyer artificial saliva. J. Optoelectron. Adv. Mater. 9, 3405–3410 (2007)

    CAS  Google Scholar 

  18. Horcas, I., Fernández, R., Gómez-Rodríguez, J.M., Colchero, J., Gómez-herrero, J., Baro, A.M.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)

    Article  CAS  Google Scholar 

  19. Branco, A.C., Moreira, V., Reis, J.A., Colaço, R., Figueiredo-pina, C.G., Serro, A.P.: Influence of contact configuration and lubricating conditions on the microtriboactivity of the Zirconia-Ti6Al4V pair used in dental applications. J. Mech. Behav. Biomed. Mater. 91, 164–173 (2019)

    Article  CAS  Google Scholar 

  20. Gharechahi, M., Moosavi, H., Forghani, M.: Effect of surface roughness and materials composition on biofilm formation. J. Biomater. Nanobiotechnol. 2012, 541–546 (2012)

    Article  Google Scholar 

  21. Aykent, F., Yondem, I., Atilla, G., Gunal, S.K., Mustafa, C.: Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J. Prosthet. Dent. 103, 221–227 (2004)

    Article  Google Scholar 

  22. Yuan, C., Wang, X., Gao, X., Chen, F., Liang, X., Li, D.: Effects of surface properties of polymer-based restorative materials on early adhesion of Streptococcus mutans in vitro. J. Dent. 54, 33–40 (2016)

    Article  CAS  Google Scholar 

  23. Carle, A., Nikdel, K., Wennerberg, A., Holmberg, K., Olsson, J.: Surface characteristics and in vitro biofilm formation on glass ionomer and composite resin. Biomaterials 22, 481–487 (2001)

    Article  Google Scholar 

  24. Daibs, B.D.P., da Silva, J.M.F., da Rocha, D.M., Júnior, V.V.B.F., Rodrigues, J.R.: Microstructural analysis of restorative materials submitted to acid exposure. Braz. Dent. Sci. 15, 19–26 (2012)

    Google Scholar 

  25. Khan, A.A., Siddiqui, A.Z., Al-kheraif, A.A.: Effect of different pH solvents on micro-hardness and surface topography of dental nano-composite: an in vitro analysis. Pak. J Med Sci. 31, 854–859 (2015)

    Google Scholar 

  26. Valinoti, A.C., Neves, B.G., Moreira, E., Maia, L.C.: Surface degradation of composite resins by acidic medicines and pH-cycling. J. Appl. Oral. Sci. 16, 257–265 (2008)

    Article  CAS  Google Scholar 

  27. Ilday, N., Bayindir, Y.Z., Erdem, V.: Effect of three different acidic beverages on surface characteristics of composite resin restorative materials. Mater. Res. Innov. 14, 385–391 (2010)

    Article  Google Scholar 

  28. Bajwa, N.K., Pathak, A.: Change in surface roughness of esthetic restorative materials after exposure to different immersion regimes in a cola drink. ISRN Dent. 2014, 1–7 (2014)

    Article  Google Scholar 

  29. Honório, H.M., Rios, D., Francisconi, L.F., Magalhães, A.C., Machado, M.A.A.M., Buzalaf, M.A.R.: Effect of prolonged erosive pH cycling on different restorative materials. J. Oral Rehabil. 35, 947–953 (2008)

    Article  Google Scholar 

  30. Wongkhantee, S., Patanapiradej, V., Maneenut, C., Tantbirojn, D.: Effect of acidic food and drinks on surface hardness of enamel, dentine, and tooth-coloured filling materials. J. Dent. 34, 214–220 (2006)

    Article  CAS  Google Scholar 

  31. Cilli, R., Carlos, J., Prakki, A.: Properties of dental resins submitted to pH catalysed hydrolysis. J. Dent. 40, 1144–1150 (2012)

    Article  CAS  Google Scholar 

  32. Voltarelli, F.R., Grv, O.D., Zhuh, W.K.H., Iru, L., Dw, G.D.V., Fldo, D., Khswdqh, V., Dflg, F., Hwkdqro, D.Q.G., Gherqglqj, L., Dqg, P., Oohu, R.U.: Effect of chemical degradation followed by toothbrushing on the surface roughness of restorative composites. J. Appl. Oral. Sci. 9, 585–590 (2010)

    Article  Google Scholar 

  33. Persson, B.N.J., Scaraggi, M.: Theory of adhesion: role of surface roughness. J. Chem. Phys. 141, 124701 (2014)

    Article  CAS  Google Scholar 

  34. Yu, P., Xu, Z., Arola, D.D., Min, J., Zhao, P., Gao, S.: Effect of acidic agents on the wear behavior of a polymer infiltrated ceramic network (PICN) material. J. Mech. Behav. Biomed. Mater. 74, 154–163 (2017)

    Article  CAS  Google Scholar 

  35. Yap, A.U.J., Chew, C.L., Ong, L.F.K.L., Teoh, S.H.: Environmental damage and occlusal contact area wear of composite restoratives. J. Oral Rehabil. 29, 87–97 (2002)

    Article  CAS  Google Scholar 

  36. Turunen, R.: Experimental sports drinks with minimal dental erosion effect. Scand. J. Dent. Res. 98, 120–128 (1990)

    Google Scholar 

  37. Daokar, S., Kalekar, A., Daokar, S.: An in vitro evaluation of pH variations on physical properties of tooth coloured restorative materials. J. Dent. Med. Sci. 11, 25–27 (2013)

    Google Scholar 

  38. Colaço, R., Vilar, R.: A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear 254, 625–634 (2003)

    Article  Google Scholar 

  39. Zigan, M., Ragan, M., Fischlschweiger, W., Bergman, M.: Hydrolytic degradation of dental composites. J. Dent. Res. 63, 1248–1254 (1984)

    Article  Google Scholar 

  40. De Witte, A.M.J.C., De Maeyer, E.A.P., Verbeeck, R.M.H.: Surface roughening of glass ionomer cements by neutral NaF solutions. Biomaterials 24, 1995–2000 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

To Fundação para a Ciência e a Tecnologia for funding through projects 3D-DentalPrint (02/SAICT/2016/023940) and the unit projects UID/QUI/00100/2013, UID/BIM/04585/2016, and UID/EMS/50022/2019 (LAETA) from CQE, CiiEM, and IDMEC, respectively.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Colaço or A. P. Serro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Branco, A.C., Brito, J., Codorniz, M. et al. Tribological Behavior of Restorative Dental Microcomposites After Exposure to Mouth Acids. Tribol Lett 67, 90 (2019). https://doi.org/10.1007/s11249-019-1204-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1204-5

Keywords

Navigation