Skip to main content
Log in

Quantifying, Locating, and Following Asperity-Scale Wear Processes Within Multiasperity Contacts

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Wear tests are inherently destructive and wear surfaces are often consumed before the worn volume can be detected with traditional methods. Elucidating the subtler features of incipient wear requires improvements in our ability to quantify, locate, and follow wear at the asperity scale. The topographic difference method provides a possible solution, but its use is limited by the difficulty in perfectly repositioning samples and the uncertain effect of imperfect repositioning on the wear measurement. This paper quantified the detection limits of the topographic difference method under the conditions of typical repositioning errors, surface topographies, and measurement approaches. With repositioning errors on the order of 2 μm, the raw/uncorrected topographic difference method reliably detected worn volumes as small as 10 μm3, which rivals the most sensitive macroscale wear measurements reported in the literature. Following virtual posttest realignment, wear volumes as small as 0.1 μm3 were detected. Using standard topographic difference methods in an interrupted wear test allowed us to map asperity-scale wear onto features of the unworn surface profile, observe a complex distribution of real contact areas, and follow the gradual removal of individual asperities with a resolution of 0.1 μm3. To our knowledge, these are the first direct observations of the asperity-scale wear process within a multiasperity macroscale contact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Burris, D.L., Sawyer, W.G.: A low friction and ultra low wear rate PEEK/PTFE composite. Wear 261, 410–418 (2006)

    Article  CAS  Google Scholar 

  2. Scherge, M., Pöhlmann, K., Gervé, A.: Wear measurement using radionuclide-technique (RNT). Wear 254, 801–817 (2003)

    Article  CAS  Google Scholar 

  3. Scherge, M.: The running-in of lubricated metal-metal contacts—a review on ultra-low wear systems. Lubricants 6, 54 (2018)

    Article  Google Scholar 

  4. Burris, D.L., Sawyer, W.G.: Measurement uncertainties in wear rates. Tribol. Lett. 36, 81–87 (2009)

    Article  Google Scholar 

  5. Novak, R., Polcar, T.: Tribological analysis of thin films by pin-on-disc: evaluation of friction and wear measurement uncertainty. Tribol. Int. 74, 154–163 (2014)

    Article  CAS  Google Scholar 

  6. Gnecco, E., Bennewitz, R., Meyer, E.: Abrasive wear on the atomic scale. Phys. Rev. Lett. 88, 215501 (2002)

    Article  CAS  Google Scholar 

  7. Bhaskaran, H., Gotsmann, B., Sebastian, A., Drechsler, U., Lantz, M.A., Despont, M., Jaroenapibal, P., Carpick, R.W., Chen, Y., Sridharan, K.: Ultralow nanoscale wear through atom-by-atom attrition in silicon-containing diamond-like carbon. Nat. Nanotechnol. 5, 181 (2010)

    Article  CAS  Google Scholar 

  8. Gotsmann, B., Lantz, M.A.: Atomistic wear in a single asperity sliding contact. Phys. Rev. Lett. 101, 125501 (2008)

    Article  Google Scholar 

  9. Xiao, C., Guo, J., Zhang, P., Chen, C., Chen, L., Qian, L.: Effect of crystal plane orientation on tribochemical removal of monocrystalline silicon. Sci. Rep. 7, 40750 (2017)

    Article  CAS  Google Scholar 

  10. Chung, K.-H.: Wear characteristics of atomic force microscopy tips: a review. Int. J. Precis. Eng. Manuf. 15, 2219–2230 (2014)

    Article  Google Scholar 

  11. Liu, J., Notbohm, J.K., Carpick, R.W., Turner, K.T.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4, 3763–3772 (2010)

    Article  CAS  Google Scholar 

  12. Chung, K.-H., Kim, D.-E.: Fundamental investigation of micro wear rate using an atomic force microscope. Tribol. Lett. 15, 135–144 (2003)

    Article  CAS  Google Scholar 

  13. Sato, T., Ishida, T., Jalabert, L., Fujita, H.: Real-time transmission electron microscope observation of nanofriction at a single Ag asperity. Nanotechnology 23, 505701 (2012)

    Article  Google Scholar 

  14. Zhang, P., Chen, C., Xiao, C., Chen, L., Qian, L.: Comparison of wear methods at nanoscale: line scanning and area scanning. Wear 400–401, 137–143 (2018)

    Article  Google Scholar 

  15. Zhao, X., Perry, S.S.: Temperature-dependent atomic scale friction and wear on PbS(100). Tribol. Lett. 39, 169–175 (2010)

    Article  CAS  Google Scholar 

  16. Jacobs, T.D.B., Carpick, R.W.: Nanoscale wear as a stress-assisted chemical reaction. Nat. Nanotechnol. 8, 108 (2013)

    Article  CAS  Google Scholar 

  17. Liao, Y., Marks, L.D.: Direct observation of layer-by-layer wear. Tribol. Lett. 59, 46 (2015)

    Article  Google Scholar 

  18. Archard, J.F., Hirst, W.: The wear of metals under unlubricated conditions. Proc. R. Soc. Lond. A 236, 397–410 (1956)

    Article  Google Scholar 

  19. Gåhlin, R., Jacobson, S.: A novel method to map and quantify wear on a micro-scale. Wear 222(2), 93–102 (1998)

    Article  Google Scholar 

  20. Furustig, J., Dobryden, I., Almqvist, A., Almqvist, N., Larsson, R.: The measurement of wear using AFM and wear interpretation using a contact mechanics coupled wear model. Wear 350–351, 74–81 (2016)

    Article  Google Scholar 

  21. Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid-solid contacts. MRS Bull. 33, 1159–1167 (2008)

    Article  CAS  Google Scholar 

  22. Pérez, A.T., Battez, A.H., García-atance, G., Viesca, J.L., González, R., Hadfield, M.: Use of optical profilometry in the ASTM D4172 standard. Wear 271, 2963–2967 (2011)

    Article  Google Scholar 

  23. Wahl, K.J., Sawyer, W.G.: Observing interfacial sliding processes in solid-solid contacts. MRS Bull. 33, 1159–1167 (2008)

    Article  CAS  Google Scholar 

  24. Khare, H.S., Lahouij, I., Jackson, A., Feng, G., Chen, Z., Cooper, G.D., Carpick, R.W.: Nanoscale generation of robust solid films from liquid-dispersed nanoparticles via in situ atomic force microscopy: growth kinetics and nanomechanical properties. ACS Appl. Mater. Interfaces 10, 40335–40347 (2018)

    Article  CAS  Google Scholar 

  25. Vahdat, V., Grierson, D.S., Turner, K.T., Carpick, R.W.: Mechanics of interaction and atomic-scale wear of amplitude modulation atomic force microscopy probes. ACS Nano 7, 3221–3235 (2013)

    Article  CAS  Google Scholar 

  26. Wang, Z.Z., Gu, P., Wu, X.P., Zhang, H., Zhang, Z., Chiang, M.Y.M.: Micro/nano-wear studies on epoxy/silica nanocomposites. Compos. Sci. Technol. 79, 49–57 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from NSF Grant # CMMI-1434435 and an ExxonMobil Knowledge Build Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Burris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garabedian, N.T., Bhattacharjee, A., Webster, M.N. et al. Quantifying, Locating, and Following Asperity-Scale Wear Processes Within Multiasperity Contacts. Tribol Lett 67, 89 (2019). https://doi.org/10.1007/s11249-019-1203-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1203-6

Keywords

Navigation