Advertisement

Tribology Letters

, 67:86 | Cite as

Influence of Thermal Aging in Oil on the Friction and Wear Properties of Nitrile Butadiene Rubber

  • Bingqi Jiang
  • Xiaohong Jia
  • Zixi Wang
  • Tao WangEmail author
  • Fei GuoEmail author
  • Yuming Wang
Original Paper
  • 45 Downloads

Abstract

An experimental study on the influence of thermal aging on the friction and wear properties of a nitrile butadiene rubber (NBR)–steel pair was carried out. Rubber specimens were aged in hydraulic oil at 60 °C and 90 °C for 0–70 days. The Shore hardness, Young’s modulus, rebound resilience, and other mechanical properties were measured. The friction coefficient and wear volume were tested to evaluate the tribology performance. To investigate the mechanism of NBR thermal aging, the molecular structure and crosslinking degree were analyzed. Crosslinking with rubber aging in oil led to differences in the physical and mechanical properties. The Shore A hardness decreased initially and then increased. The Young’s modulus increased and the rebound resilience decreased. The friction coefficient increased but the wear volume decreased with aging time. These differences affected the friction and wear behavior of the NBR against the steel shafts and resulted in sealing-ring degradation and failure.

Keywords

Nitrile butadiene rubber Aging Friction Wear 

Notes

Acknowledgements

The work described in this paper has been supported by the National Natural Science Foundation of China (Grant Nos. 51505249, 51575300, 51735006) and Independent Research Project of State Key Laboratory of Tribology (Grant No. SKLT2016B09).

References

  1. 1.
    Jiang, B., Jia, X., Guo, F., Wang, Y.: Influence of surface polishing on the friction behaviors of NBR. Surf. Rev. Lett. (2017).  https://doi.org/10.1142/S0218625X19500161 CrossRefGoogle Scholar
  2. 2.
    Ahmed, F.S., Shafy, M., Abd El-megeed, A.A., Hegazi, E.M.: The effect of γ-irradiation on acrylonitrile–butadiene rubber NBR seal materials with different antioxidants. Mater. Des. 1980–2015(36), 823–828 (2012).  https://doi.org/10.1016/j.matdes.2011.02.066 CrossRefGoogle Scholar
  3. 3.
    Guo, F., Jia, X., Huang, L., Salant, R.F., Wang, Y.: The effect of aging during storage on the performance of a radial lip seal. Polym. Degrad. Stab. 98(11), 2193–2200 (2013).  https://doi.org/10.1016/j.polymdegradstab.2013.08.015 CrossRefGoogle Scholar
  4. 4.
    Lv, X.R., Wang, H.M., Wang, S.J.: Effect of swelling nitrile rubber in cyclohexane on its ageing, friction and wear characteristics. Wear 328–329, 414–421 (2015).  https://doi.org/10.1016/j.wear.2015.03.016 CrossRefGoogle Scholar
  5. 5.
    Guo, F., Jia, X., Lv, M., Wang, L., Salant, R.F., Wang, Y.: The effect of aging in oil on the performance of a radial lip seal. Tribol. Int. 78, 187–194 (2014).  https://doi.org/10.1016/j.triboint.2014.05.017 CrossRefGoogle Scholar
  6. 6.
    Feyzullahoğlu, E.: Abrasive wear, thermal and viscoelastic behaviors of rubber seal materials used in different working conditions. Proc. Inst. Mech. Eng. J. 229(1), 64–73 (2014).  https://doi.org/10.1177/1350650114541750 CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Grahn, M., Antzutkin, O., Prakash, B.: Temperature-dependent changes of physicochemical and tribological properties of acrylonitrile–butadiene rubber elastomer upon ageing in hexadecane and diethylene glycol dibutyl ether. Proc. Inst. Mech. Eng. J. 227(8), 826–836 (2013).  https://doi.org/10.1177/1350650113489612 CrossRefGoogle Scholar
  8. 8.
    Dong, C.L., Yuan, C.Q., Bai, X.Q., Yan, X.P., Peng, Z.: Tribological properties of aged nitrile butadiene rubber under dry sliding conditions. Wear 322–323, 226–237 (2015).  https://doi.org/10.1016/j.wear.2014.11.010 CrossRefGoogle Scholar
  9. 9.
    Nevshupa, R., Martínez, L., Álvarez, L., López, M.F., Huttel, Y., Méndez, J., Román, E.: Influence of thermal ageing on surface degradation of ethylene-propylene-diene elastomer. J. Appl. Polym. Sci. 119(1), 242–251 (2011).  https://doi.org/10.1002/app.32519 CrossRefGoogle Scholar
  10. 10.
    Zhao, J., Yang, R., Iervolino, R., Barbera, S.: Investigation of crosslinking in the thermooxidative aging of nitrile-butadiene rubber. J. Appl. Polym. Sci. (2015).  https://doi.org/10.1002/app.41319 CrossRefGoogle Scholar
  11. 11.
    Xu, C., Chen, Y., Huang, J.: Thermal aging on mechanical properties and crosslinked network of natural rubber/zinc dimethacrylate composites. J. Appl. Polym. Sci. 124, 2240–2249 (2012)CrossRefGoogle Scholar
  12. 12.
    Mostafa, A., Abouel-Kasem, A., Bayoumi, M.R., El-Sebaie, M.G.: The influence of CB loading on thermal aging resistance of SBR and NBR rubber compounds under different aging temperature. Mater. Des. 30(3), 791–795 (2009).  https://doi.org/10.1016/j.matdes.2008.05.065 CrossRefGoogle Scholar
  13. 13.
    Morrell, P.R., Patel, M., Skinner, A.R.: Accelerated thermal ageing studies on nitrile rubber O-rings. Polym. Test. 22(6), 651–656 (2003).  https://doi.org/10.1016/S0142-9418(02)00171-X CrossRefGoogle Scholar
  14. 14.
    Guan, H., Yang, F., Wang, Q.: Study on evaluation index system of rubber materials for sealing. Mater. Des. 32(4), 2404–2412 (2011).  https://doi.org/10.1016/j.matdes.2010.12.030 CrossRefGoogle Scholar
  15. 15.
    Thomine, M., Degrange, J., Vigier, G., Chazeau, L., Pelletier, J.M., Kapsa, P., Guerbé, L., Dudragne, G.: Study of relations between viscoelasticity and tribological behaviour of filled elastomer for lip seal application. Tribol. Int. 40(2), 405–411 (2007).  https://doi.org/10.1016/j.triboint.2005.09.033 CrossRefGoogle Scholar
  16. 16.
    Roberts, A.D.: A guide to estimating the friction of rubber. Rubber Chem. Technol. 65(3), 673–686 (1992).  https://doi.org/10.5254/1.3538633 CrossRefGoogle Scholar
  17. 17.
    Allen, K.W.: A review of contemporary views of theories of adhesion. J. Adhes. 21(3–4), 261–277 (1987).  https://doi.org/10.1080/00218468708074974 CrossRefGoogle Scholar
  18. 18.
    Mofidi, M., Kassfeldt, E., Prakash, B.: Tribological behaviour of an elastomer aged in different oils. Tribol. Int. 41(9–10), 860–866 (2008).  https://doi.org/10.1016/j.triboint.2007.11.013 CrossRefGoogle Scholar
  19. 19.
    Kim, J., Kim, S., Choi, S., Lee, S.: The friction behavior of NBR surface modified by argon plasma treatment. Int. J. Mod. Phys. B 25(31SI), 4249–4252 (2011).  https://doi.org/10.1142/S0217979211066696 CrossRefGoogle Scholar
  20. 20.
    Persson, B., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. 17(1), R1–R62 (2005).  https://doi.org/10.1088/0953-8984/17/1/R01 CrossRefGoogle Scholar
  21. 21.
    Zhao, J., Yang, R., Iervolino, R., Barbera, S.: Changes of chemical structure and mechanical property levels during thermo-oxidative aging of NBR. Rubber Chem. Technol. 86(4), 591–603 (2013).  https://doi.org/10.5254/RCT.13.87969 CrossRefGoogle Scholar
  22. 22.
    Schallamach, A.: A theory of dynamic rubber friction. Wear 6(5), 375–382 (1963)CrossRefGoogle Scholar
  23. 23.
    Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. R. Soc. Lond. A 274, 21–39 (1963)CrossRefGoogle Scholar
  24. 24.
    Guo, F., Jia, X., Suo, S., Salant, R.F., Wang, Y.: A mixed lubrication model of a rotary lip seal using flow factors. Tribol. Int. 57, 195–201 (2013)CrossRefGoogle Scholar
  25. 25.
    Jia, X., Guo, F., Huang, L., Salant, R.F., Wang, Y.: Parameter analysis of the radial lip seal by orthogonal array method. Tribol. Int. 64, 96–102 (2013)CrossRefGoogle Scholar
  26. 26.
    Guo, F., Jia, X., Gao, Z., Wang, Y.: The effect of texture on the shaft surface on the sealing performance of radial lip seals. Sci. China Phys. Mech. Astron. 57(7), 1343–1351 (2014)CrossRefGoogle Scholar
  27. 27.
    Jia, X., Guo, F., Huang, L., Wang, L., Gao, Z., Wang, Y.: Effects of the radial force on the static contact properties and sealing performance of a radial lip seal. Sci. China Technol. Sci. 57(6), 1175–1182 (2014)CrossRefGoogle Scholar
  28. 28.
    Guo, F., Jia, X., Longke, W., Salant, R.F., Wang, Y.: The effect of wear on the performance of a rotary lip seal. J. Tribol. 136(4), 41703 (2014)CrossRefGoogle Scholar
  29. 29.
    Dong, C., Yuan, C., Wang, L., Liu, W., Bai, X., Yan, X.: Tribological properties of water-lubricated rubber materials after modification by MoS2 nanoparticles. Sci. Rep. (2016).  https://doi.org/10.1038/srep35023 CrossRefGoogle Scholar
  30. 30.
    Qin, H., Zhou, X., Zhao, X., Xing, J., Yan, Z.: A new rubber/UHMWPE alloy for water-lubricated stern bearings. Wear 328, 257–261 (2015)CrossRefGoogle Scholar
  31. 31.
    Rosentsveig, R., Gorodnev, A., Feuerstein, N., Friedman, H., Zak, A., Fleischer, N., Tannous, J., Dassenoy, F., Tenne, R.: Fullerene-like MoS2 nanoparticles and their tribological behavior. Tribol. Lett. 36(2), 175–182 (2009)CrossRefGoogle Scholar
  32. 32.
    Li, A.: The aging phenomena and aging mechanisms of rubbers. Spec. Purp. Rubber Prod. 30, 56–67 (2009)Google Scholar
  33. 33.
    Li, A.: Aging and lifetime prediction for rubbers. Rubber Ref. 39, 2–77 (2009)Google Scholar
  34. 34.
    Ślusarski, L.: Thermal stability of elastomers. J. Therm. Anal. Calorim. 29(5), 905–912 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of TribologyTsinghua UniversityBeijingChina
  2. 2.Joint Research Center for Rubber and Plastic SealsTsinghua UniversityBeijingChina
  3. 3.Science and Technology on Vehicle Transmission LaboratoryChina North Vehicle Research InstituteBeijingChina

Personalised recommendations