Tribology Letters

, 67:98 | Cite as

Effect of Adding Tungsten Disulfide to a Copper Matrix on the Formation of Tribo-Film and on the Tribological Behavior of Copper/Tungsten Disulfide Composites

  • Lin Zhao
  • Pingping YaoEmail author
  • Taiming Gong
  • Haibin Zhou
  • Minwen Deng
  • Zonghao Wang
  • Zhongyi Zhang
  • Yelong Xiao
  • Fenghua LuoEmail author
Original Paper


The tribological behavior and formation of tribo-film of copper/tungsten disulfide (WS2) composites featuring 0–30% WS2 volume fractions, prepared using spark plasma sintering were investigated. Results indicated that WS2 as addition into the copper matrix could effectively reduce the coefficient of friction (COF) of Cu/WS2 composites. The lowest COF obtained was 0.16, while the wear rate was approximately 5 × 10−5 mm3·N− 1·m−1 for the Cu/WS2 composite which contained 25vol% of WS2 (here defined as Cu-25WS2). X-ray photoelectron spectroscopy and transmission electron microscopy analyses indicated that an oxygen-rich tribo-film with a thickness of approximately 10 nm was formed on the wear track, while a thick layer which was rich in WS2 and Cu2S and with a thickness of approximately 50 nm was observed below the oxygen-rich tribo-film. The superior tribological properties could ascribed to the formation of these tribo-films.


Copper matrix composites Tribological properties Tungsten disulfide Tribo-film Wear mechanism 



This work was supported by the National Nature Science Foundation of China. [Grant Number 51475476]. Thanks to Dr. Yang Li, Dr. Xiaoqin Ou and Dr. Hui Deng from Central South University, China for their kind contributions.


  1. 1.
    Hammes, G., Schroeder, R., Binder, C., Klein, A.N., deMello, J.D.B.: Effect of double pressing/double sintering on the sliding wear of self-lubricating sintered composites. Tribol. Int. 70, 119–127 (2014)CrossRefGoogle Scholar
  2. 2.
    Lin Liu, Z., Zhang, M., Dienwiebel: The runningin tribological behavior of Pbfree brass and its efect on microstructural evolution. Tribol. Lett. 65, 160 (2017)CrossRefGoogle Scholar
  3. 3.
    Gebretsadik, D.W., Hardell, J., Prakash, B.: Friction and wear characteristics of different Pb-free bearing materials in mixed and boundary lubrication regimes. Wear. 340–341, 63–72 (2015)CrossRefGoogle Scholar
  4. 4.
    Moustafa, S.F., El-Badry, S.A., Sanad, A.M., Kieback, B.: Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders. Wear. 253, 699–710 (2002)CrossRefGoogle Scholar
  5. 5.
    Larionova, N.S., Nikonova, R.M., Ladyanov, V.I.: Mechanosynthesis of nanostructured composites copper-fullerite, copper-graphite. Adv. Powder Technol. 29, 399–406 (2018)CrossRefGoogle Scholar
  6. 6.
    Irtegov, Y., An, V., Machekhina, K., Lemachko, N.: Influence of copper nanoparticles on tribological properties of nanolamellar tungsten disulfide. Key Eng. Mater. 133–136 (2016)CrossRefGoogle Scholar
  7. 7.
    Jiang, X., Fang, H.C., Xiao, P., Liu, T., Zhu, J.M., Wang, Y.C., Liu, P.F., Li, Y.: Influence of carbon coating with phenolic resin in natural graphite on the microstructures and properties of graphite/copper composites. J. Alloys Compd. 744, 165–173 (2018)CrossRefGoogle Scholar
  8. 8.
    Elkady, O.A.M., Abu-Oqail, A., Ewais, E.M.M., El-Sheikh, M.: Physico-mechanical and tribological properties of Cu/h-BN nanocomposites synthesized by PM route. J. Compd. 625, 309–317 (2015)CrossRefGoogle Scholar
  9. 9.
    Rajkumar, K., Aravindan, S.: Tribological behavior of microwave processed copper–nanographite composites. Tribol. Int. 57, 282–296 (2013)CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Shockley, J.Michael, Vo, P., Chromik, R.R.: Tribological behavior of cold-sprayed Cu–MoS2 composite coating during dry sliding wear. Tribol. Lett. 62, 9 (2016)CrossRefGoogle Scholar
  11. 11.
    Kato, H., Takama, M., Iwai, Y., Washida, K., Sasaki, Y.: Wear and mechanical properties of sintered copper-tin composites containing graphite or molybdenum disulfide. Wear. 255, 573–578 (2003)CrossRefGoogle Scholar
  12. 12.
    Linlin Su, F., Gao, X., Han, R., Fu, E., Zhang: Tribological behavior of copper–graphite powder third body on copper-based friction materials. Tribol. Lett. 60, 30 (2015)CrossRefGoogle Scholar
  13. 13.
    Xu, S., Gao, X., Hu, M., Wang, D., Jiang, D. Sun, J., Zhou, F., Weng, L., Liu, W.: Microstructure evolution and enhanced tribological properties of Cu-doped WS2 films. Tribol. Lett. 55, 1–13 (2014)CrossRefGoogle Scholar
  14. 14.
    An, V., Anisimov, E., Druzyanova, V., Burtsev, N., Shulepov, I., Khaskelberg, M.: Study of tribological behavior of Cu–MoS2 and Ag–MoS2 nanocomposite lubricants. SpringerPlus. 5, 72 (2016)CrossRefGoogle Scholar
  15. 15.
    Qian, G., Feng, Y., Li, B., Huang, S., Liu, H., Ding, K.: Effect of electrical current on the tribological behavior of the Cu-WS2-G composites in air and vacuum. Chin. J. Mech. Eng. 26, 384–392 (2013)CrossRefGoogle Scholar
  16. 16.
    Tyagi, R., Das, A.K., Mandal, A.: Electrical discharge coating using WS2 and Cu powder mixture for solid lubrication and enhanced tribological performance. Tribol. Int. 120, 80–92 (2018)CrossRefGoogle Scholar
  17. 17.
    Huang, S., Feng, Y., Liu, H., Ding, K., Qian, G.: Electrical sliding friction and wear properties of Cu-MoS2-graphite-WS2 nanotubes composites in air and vacuum conditions. Mater. Sci. Eng. A. 560, 685–692 (2013)CrossRefGoogle Scholar
  18. 18.
    Kovalchenko, A.M., Fushchich, O.I., Danyluk, S.: The tribological properties and mechanism of wear of Cu-based sintered powder materials containing molybdenum disulfide and molybdenum diselenite under unlubricated sliding against copper. Wear. 290–291,106–123 (2012)CrossRefGoogle Scholar
  19. 19.
    Huiquan, C., Zhiyuan, Q., Lei, Z.: Tribological behavior of Cu matrix composites containing graphite and tungsten disulfide. Tribol. Trans. 6, 1037–1043 (2014)Google Scholar
  20. 20.
    Wang, Q., Chen, M., Shan, Z., Sui, C., Zhang, L., Zhu, S., Wang, F.: Comparative study of mechanical and wear behavior of Cu/WS2 composites fabricated by spark plasma sintering and hot pressing. J. Mater. Sci. Technol. 33, 1416–1423 (2017)CrossRefGoogle Scholar
  21. 21.
    Juszczyk, B., Kulasa, J., Malara, S., Czepelak, M., Malec, W., Cwolek, B., Wierzbicki, Ł: Tribological properties of copper-based composites with lubricating phase particles. Arch. Metall. Mater. 59 (2014)Google Scholar
  22. 22.
    Xiao, J., Zhang, W., Liu, L., Zhang, L., Zhang, C.: Tribological behavior of copper-molybdenum disulfide composites. Wear 384–385, 61–71 (2017)CrossRefGoogle Scholar
  23. 23.
    BARIN: Thermochemical Data of Pure Substances, Nai-liang, C.H.E.N.G., et al. transl. Beijing: Science Press. (2003)Google Scholar
  24. 24.
    Liang, Y., Che, Y., Liu, X.: Thermodynamic data manual of inorganic. Northeast University Press, Boston (1993)Google Scholar
  25. 25.
    Su, Y., Zhang, Y., Song, J., Hu, L.: Tribological behavior and lubrication mechanism of self-lubricating ceramic/metal composites: the effect of matrix type on the friction and wear properties. Wear. 372–373, 130–138 (2017)CrossRefGoogle Scholar
  26. 26.
    Lin, C.B., Chang, Z., Tung, Y.H., Ko, Y.: Manufacturing and tribological properties of copper matrix/carbon nanotubes composites. Wear. 270, 382–394 (2011)CrossRefGoogle Scholar
  27. 27.
    Ted Guo, M.L., Tsao, C.Y.A.: Tribological behavior of aluminum/SiC/nickel-coated graphite hybrid composites. Mater. Sci. Eng. A 333, 134–145 (2002)CrossRefGoogle Scholar
  28. 28.
    Chandrakanth, R.G., Rajkumar, K., Aravindan, S.: Fabrication of copper-TiC-graphite hybrid metal matrix composites through microwave processing. Int. J. Adv. Manuf. Technol. 48, 645–653 (2010)CrossRefGoogle Scholar
  29. 29.
    Xiao, Y., Zhang, Z., Yao, P., Fan, K., Zhou, H., Gong, T., Zhao, L., Deng, M.: Mechanical and tribological behaviors of copper metal matrix composites for brake pads used in high-speed trains. Tribol. Int. 119, 585–592 (2018)CrossRefGoogle Scholar
  30. 30.
    Kotnarowski, A.: Selective transfer phenomenon in copper-steel tribological systems. Solid State Phenom. 147–149, 558–563 (2009)CrossRefGoogle Scholar
  31. 31.
    Ejima, T., Saitoh, K., Shinke, N., Taruma, M., Hirai, Y.: Atomic-level analysis of copper sulfide (Cu2S): crystal structure and sliding characteristics. Technology Reports of Kansai University. 54, 23–33(2012)Google Scholar
  32. 32.
    Varenberg, M., Ryk, G., Yakhnis, A., Kligerman, Y., Kondekar, N., McDowell, M.T.: Mechano-chemical surface modification with Cu2S: inducing superior lubricity. Tribol. Lett. 64, 28 (2016)CrossRefGoogle Scholar
  33. 33.
    Bowden, F.P., Tabor, D.: The friction and lubrication of solids I: Oxford: Clarendon Press (1950)Google Scholar
  34. 34.
    Zhang, J.X.L., Zhou, K.-C., Wang, X.P.: Microscratch behavior of copper–graphite composites. Tribol. Int. 57, 38–45 (2013)CrossRefGoogle Scholar
  35. 35.
    Futami, T., Ohira, M., Muto, H., Sakai, M.: Contact/scratch-induced surface deformation and damage of copper–graphite particulate composites. Carbon. 47, 2742–2751 (2009)CrossRefGoogle Scholar
  36. 36.
    Equey, S., Houriet, A., Mischler, S.: Wear and frictional mechanisms of copper-based bearing alloys. Wear. 273, 9–16 (2011)CrossRefGoogle Scholar
  37. 37.
    Colaco, R., Vilar, R.: A model for the abrasive wear of metallic matrix particle-reinforced materials. Wear 254, 625–634 (2003)CrossRefGoogle Scholar
  38. 38.
    Lafaye, S.: True solution of the ploughing friction coefficient with elastic recovery in the case of a conical tip with a blunted spherical extremity. Wear. 264, 550–554 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Lin Zhao
    • 1
  • Pingping Yao
    • 1
    Email author
  • Taiming Gong
    • 1
  • Haibin Zhou
    • 1
  • Minwen Deng
    • 1
  • Zonghao Wang
    • 1
  • Zhongyi Zhang
    • 1
  • Yelong Xiao
    • 1
  • Fenghua Luo
    • 1
    Email author
  1. 1.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaChina

Personalised recommendations