Tribology Letters

, 67:87 | Cite as

Influence of Frictional Interface State on Tribological Performance of Sintered Polycrystalline Diamond Sliding Against Different Mating Materials

  • Wenbo Qin
  • Yaoyao Liu
  • Wen YueEmail author
  • Chengbiao WangEmail author
  • Guozheng Ma
  • Haidou Wang
Original Paper


Understanding the evolution of frictional interface state is of great significance to the effective design of antifriction and wear resistance properties at macro-scale contact, which plays an important role in the whole tribological performance. The trigological behavior of the sintered polycrystalline diamond (PCD) sliding against different mating materials was evaluated under dry nitrogen (N2) environment. The coefficients of friction (COF) and wear rates of the PCD were diverse due to the various formations of transferflim and filling effects across sliding interfaces, which is dependent on the mating materials. Additionally, the Raman measurements demonstrate that the carbon rehybridization (sp3 to sp2) process occurred accompanying with the formation of carbonaceous transferfilm during sliding. The effects of antifriction transferfilm formations and filling on the enhanced tribological performance of PCD at macro-scale contact were highlighted.


Polycrystalline diamond Transferfilm formation Carbon rehybridization Filling effects Enhanced tribological performance 



This work was financially supported by the National Natural Science Foundation of China (51875537, 41572359, 51375466), Beijing Natural Science Foundation (3172026, 3182032), Beijing Nova Program (Z171100001117059) and the Fundamental Research Funds for the Central Universities (2652018112).


  1. 1.
    Knuteson, C.W., Sexton, T.N., Cooley, C.H.: Wear-in behavior of polycrystalline diamond thrust bearings. Wear 271, 2106–2110 (2011)CrossRefGoogle Scholar
  2. 2.
    Qin, W.B., Yue, W., Wang, C.B.: Understanding integrated effects of humidity and interfacial transfer film formation on tribological behaviors of sintered polycrystalline diamond. RSC Adv. 5, 53484–53496 (2015)CrossRefGoogle Scholar
  3. 3.
    Lingwall, B.A., Sexton, T.N., Cooley, C.H.: Polycrystalline diamond bearing testing for marine hydrokinetic application. Wear 302, 1514–1519 (2013)CrossRefGoogle Scholar
  4. 4.
    Zhao, Y.H., Yue, W., Lin, F., Wang, C.B., Wu, Z.Y.: Friction and wear behaviors of polycrystalline diamond under vacuum conditions. Int. J. Refract. Met. Hard Mater. 50, 43–52 (2015)CrossRefGoogle Scholar
  5. 5.
    Liu, Y., Meletis, E.I.: Evidence of graphitization of diamond-like carbon films during sliding wear. J. Mater. Sci. 32, 3491–3495 (1997)CrossRefGoogle Scholar
  6. 6.
    Huang, Y.H., Yao, Q.Z., Qi, Y.Z., Cheng, Y., Wang, H.T., Li, Q.Y., et al.: Wear evolution of monolayer graphene at the macroscale. Carbon 115, 600–607 (2017)CrossRefGoogle Scholar
  7. 7.
    Li, J.S., Yue, W., Qin, W.B.: Approach to controllable tribological properties of sintered polycrystalline diamond compact through annealing treatment. Carbon 116, 103–112 (2017)CrossRefGoogle Scholar
  8. 8.
    Gardos, M.N., Soriano, B.L.: The effect of environment on the tribological properties of polycrystalline diamond films. J. Mater. Res. 5, 2599–2609 (1990)CrossRefGoogle Scholar
  9. 9.
    Liu, Y.Y., Yue, W., Qin, W.B., Wang, C.B.: Improved vacuum tribological properties of sintered polycrystalline diamond compacts treated by high temperature annealing. Carbon 124, 651–661 (2017)CrossRefGoogle Scholar
  10. 10.
    Ajikumar, P.K., Ganesan, K., Kumar, N., Ravindran, T.R., Kalavathi, S., Kamruddin, M.: Role of microstructure and structural disorder on tribological properties of polycrystalline diamond films. Appl. Surf. Sci. 469, 10–17 (2019)CrossRefGoogle Scholar
  11. 11.
    Sha, X.H., Yue, W., Qin, W.B., Wang, C.B.: Enhanced tribological behaviors of sintered polycrystalline diamond by annealing treatment under humid condition. Int. J. Refract. Met. Hard Mater. 80, 85–96 (2019)CrossRefGoogle Scholar
  12. 12.
    Liu, C., Man, Z.Y., Zhou, F.B., Chen, K., Yu, H.Y.: The wear and friction characters of polycrystalline diamond under wetting conditions. J. Tribol. 141, 021607 (2019)CrossRefGoogle Scholar
  13. 13.
    Qin, W.B., Yue, W., Wang, C.B.: Controllable wear behaviors of silicon nitride sliding against sintered polycrystalline diamond via altering humidity. J. Am. Ceram. Soc. 101, 2506–2515 (2018)CrossRefGoogle Scholar
  14. 14.
    Gosvami, N.N., Bares, J.A., Mangolini, F., Konicek, A.R., Yablon, D.G., Carpick, R.W.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348, 102–106 (2015)CrossRefGoogle Scholar
  15. 15.
    Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K.R.S., Erdemir, A., Sumant, A.V.: Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015)CrossRefGoogle Scholar
  16. 16.
    Erdemir, A., Ramirez, G., Eryilmaz, O.L., Narayanan, B., Liao, Y., Kamath, G., et al.: Carbon-based tribofilms from lubricating oils. Nature 536, 67 (2016)CrossRefGoogle Scholar
  17. 17.
    Berman, D., Erdemir, A., Sumant, A.V.: Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59, 167–175 (2013)CrossRefGoogle Scholar
  18. 18.
    Berman, D., Erdemir, A., Sumant, A.V.: Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54, 454–459 (2013)CrossRefGoogle Scholar
  19. 19.
    Chen, X.C., Zhang, C.H., Kato, T., Yang, X.A., Wu, S., Wang, R., et al.: Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C:h and a-C:H:Si films. Nat. Commun. 8, 1675 (2017)CrossRefGoogle Scholar
  20. 20.
    Manimunda, P., Al-Azizi, A., Kim, S.H., Chromik, R.R.: Shear-induced structural changes and origin of ultralow friction of hydrogenated diamond-like carbon (DLC) in dry environment. ACS Appl. Mater. Inter. 9, 16704–16714 (2017)CrossRefGoogle Scholar
  21. 21.
    Rani, R., Panda, K., Kumar, N., Titovich, K.A., Ivanovich, K.V., Vyacheslavovich, S.A.: Tribological properties of ultrananocrystalline diamond films: mechanochemical transformation of sliding interfaces. Sci. Rep. 8, 283 (2018)CrossRefGoogle Scholar
  22. 22.
    Waesche, R., Hartelt, M., Weihnacht, V.: Influence of counterbody material on wear of ta-c coatings under fretting conditions at elevated temperatures. Wear 267, 2208–2215 (2009)CrossRefGoogle Scholar
  23. 23.
    Liu, H.W., Tanaka, A., Kumagai, T.: Influence of sliding mating materials on the tribological behavior of diamond-like carbon films. Thin Solid Films 352, 145–150 (1999)CrossRefGoogle Scholar
  24. 24.
    Wang, Y.G., Liu, B., Song, J.Y., Yan, X.P., Wu, K.M.: Study on the wear mechanism of PCD tools in high-speed milling of Al-Si alloy. Adv. Mater. Res. 381, 16–19 (2011)CrossRefGoogle Scholar
  25. 25.
    Hisakado, T., Tani, H.: Effects of elevated temperatures and topographies of worn surfaces on friction and wear of ceramics in vacuum. Wear 224, 165–172 (1999)CrossRefGoogle Scholar
  26. 26.
    Pastewka, L., Moser, S., Moseler, M.: Atomistic insights into the running-in, lubrication, and failure of hydrogenated diamond-like carbon coatings. Tribol. Lett. 39, 49–61 (2010)CrossRefGoogle Scholar
  27. 27.
    Uetsuka, H., Pastewka, L., Moseler, M.: Activation and mechanochemical breaking of C-C bonds initiate wear of diamond (110) surfaces in contact with silica. Carbon 98, 474–483 (2016)CrossRefGoogle Scholar
  28. 28.
    Radhika, R., Kumar, N., Dash, S., Ravindran, T.R., Arivuolia, D., Tyagi, A.K.: Friction mechanism in diamond-like carbon film sliding against various counterbodies. Mater. Tech. 29, 366–371 (2014)CrossRefGoogle Scholar
  29. 29.
    Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116 (2009)CrossRefGoogle Scholar
  30. 30.
    Warrier, S.G., Blue, C.A., Lin, R.Y.: Control of interfaces in Al–C fibre composites. J. Mater. Sci. 28, 760–768 (1993)CrossRefGoogle Scholar
  31. 31.
    Soukup, R.W.: Historical aspects of the chemical bond chemical relationality versus physical objectivity. Monatshefte für Chemie/Chemical Monthly 136, 803–818 (2005)CrossRefGoogle Scholar
  32. 32.
    Pan, Y., Liu, X., Yang, H.: Role of C and Fe in grain refinement of an AZ 63 B magnesium alloy by Al–C master alloy. J. Mater. Sci. Technol. 21, 822–826 (2005)Google Scholar
  33. 33.
    Salivati, N., Ekerdt, J.G.: Temperature programmed desorption studies of deuterium passivated silicon nanocrystals. Surf. Sci. 603, 1121–1125 (2009)CrossRefGoogle Scholar
  34. 34.
    Konicek, A.R., Grierson, D.S., Sumant, A.V., Friedmann, T.A., Sullivan, J.P., Gilbert, P.U.P.A., et al.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, 543–548 (2012)CrossRefGoogle Scholar
  35. 35.
    Panczyk, T., Rudzinski, W.: A statistical rate theory approach to kinetics of dissociative gas adsorption on solids. J. Phys. Chem. B 108, 2898–2909 (2004)CrossRefGoogle Scholar
  36. 36.
    Alcañiz-Monge, J., Linares-Solano, A., Rand, B.: Water adsorption on activated carbons: study of water adsorption in micro-and mesopores. J. Phys. Chem. B 105, 7998–8006 (2001)CrossRefGoogle Scholar
  37. 37.
    Rabinowicz, E.: Friction and wear of materials, 2nd edn. Wiley, New York, NY (1995)Google Scholar
  38. 38.
    Zeiler, E., Klaffke, D., Hiltner, K., Grögler, T., Rosiwal, S.M., Singer, R.F.: Tribological performance of mechanically lapped chemical vapor deposited diamond coatings. Surf. Coat. Technol. 116, 599–608 (1999)CrossRefGoogle Scholar
  39. 39.
    Ma, T.B., Hu, Y.Z., Wang, H.: Molecular dynamics simulation of shear-induced graphitization of amorphous carbon films. Carbon 47, 1953–1957 (2009)CrossRefGoogle Scholar
  40. 40.
    Gao, G.T., Mikulski, P.T., Chateauneuf, G.M., Harrison, J.A.: The effects of film structure and surface hydrogen on the properties of amorphous carbon films. J. Phys. Chem. B 107, 11082–11090 (2003)CrossRefGoogle Scholar
  41. 41.
    Eryilmaz, O.L.: Tof-SIMS and XPS characterization of diamond-like carbon films after tests in inert and oxidizing environments. Wear 265, 244–254 (2008)CrossRefGoogle Scholar
  42. 42.
    Chen, J., Deng, S.Z., Chen, J., Yu, Z.X., Xu, N.S.: Graphitization of nanodiamond powder annealed in argon ambient. Appl. Phys. Lett. 74, 3651–3653 (1999)CrossRefGoogle Scholar
  43. 43.
    Wang, C.Z., Ho, K.M., Shirk, M.D., Molian, P.A.: Laser-induced graphitization on a diamond (111) surface. Phys. Rev. Lett. 85, 4092 (2000)CrossRefGoogle Scholar
  44. 44.
    Hovsepian, P.E., Mandal, P., Ehiasarian, A.P., Sáfrán, G., Tietema, R., Doerwald, D.: Friction and wear behaviour of Mo–W doped carbon-based coating during boundary lubricated sliding. Appl. Surf. Sci. 366, 260–274 (2016)CrossRefGoogle Scholar
  45. 45.
    Pachfule, P., Shinde, D., Majumder, M., Xu, Q.: Fabrication of carbon nanorods and graphene nanoribbons from a metal–organic framework. Nat. Chem. 8, 718 (2016)CrossRefGoogle Scholar
  46. 46.
    Grierson, D.S., Sumant, A.V., Konicek, A.R., Friedmann, T.A., Sullivan, J.P., Carpick, R.W.: Thermal stability and rehybridization of carbon bonding in tetrahedral amorphous carbon. J. Appl. Phys. 107, 033523 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Engineering and TechnologyChina University of Geosciences (Beijing)BeijingPeople’s Republic of China
  2. 2.Zhengzhou InstituteChina University of Geosciences (Beijing)ZhengzhouPeople’s Republic of China
  3. 3.Zhengzhou Institute of Multipurpose Utilization of Mineral ResourcesChinese Academy of Geological SciencesZhengzhouPeople’s Republic of China
  4. 4.National Key Lab for RemanufacturingAcademy of Armored Forces EngineeringBeijingPeople’s Republic of China

Personalised recommendations