Advertisement

Tribology Letters

, 67:76 | Cite as

Amorphous Carbon Doping Nano-Magnesium Silicate Hydroxide with Significant Tribological Property

  • Qiuying ChangEmail author
  • Hao Zhang
  • Rongqin Gao
Original Paper
  • 45 Downloads

Abstract

Nanocomposite lubricant additive consisting of Magnesium silicate hydroxide and amorphous carbon (MSH@C) was prepared. Amorphous carbon in the nanocomposite of MSH@C was obtained by hydrothermal decomposition of polytetrafluoroethylene (PTFE) under subcritical water condition. The MSH@C was characterized by Scanning electron microscope, X-ray diffractometer, Fourier transform infrared spectrometer, Raman spectrometer, and X-ray photoelectron spectrometer. The analysis results show that addition of PTFE in the process of synthesizing MSH can inhibit the tubular crystallization of MSH@C powder. Tribological experiments show that the doping of amorphous carbon materials can significantly enhance the friction reduction and wear resistance of nanocomposite powders as lubricant additive, and is superior to MSH and fully formulated commercial lubricant 5W30. The tribofilm on the worn balls including amorphous carbon originated from MSH@C nanoparticles accounts for the significant tribological properties.

Keywords

Hydrothermal synthesis Magnesium silicate hydroxide Amorphous carbon PTFE Wear and friction 

Notes

Acknowledgements

This work was funded by Equipment Development Department of the Central Military Commission Foundation, China (Grant No. JZX7Y20190262063601, JZX7Y20190263069101) and Beijing Key Laboratory of Long-life Technology of Precise Rotation and Transmission Mechanisms Foundation, China (Grant No. BZ0388201801).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Titirici, M.M., White, R.J., Brun, N., Budarin, V.L., Su, D.S., Del Monte, F., Clark, J.H., MacLachlan, M.J.: Sustainable carbon materials. Chem. Soc. Rev. 44, 250–290 (2015)CrossRefGoogle Scholar
  2. 2.
    Wang, R.X., Zhang, Y.H., Liao, Y.: Performance of rolling piston type rotary compressor using fullerenes (C70) and NiFe2O4 nanocomposites as lubricants additives. Front. Energy (2017).  https://doi.org/10.1007/s11708-017-0453-y CrossRefGoogle Scholar
  3. 3.
    Jiang, G.C., Yang, Y.Y.: Preparation and tribology properties of water-soluble fullerene derivative nanoball. Arab J. Chem. 10, S870–S876 (2017)CrossRefGoogle Scholar
  4. 4.
    Yang, Z., Li, W.H., Chen, C.S., Chen, X.H., Xu, L.S.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1666 (2005)CrossRefGoogle Scholar
  5. 5.
    Lin, J.S., Wang, L.W., Chen, G.H.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011)CrossRefGoogle Scholar
  6. 6.
    Lee, C.G., Hwang, Y.J., Choi, Y.M., Lee, J.K., Choi, C., Oh, J.M.: A study on the tribological characteristics of graphite nano lubricants. Int. J. Precis. Eng. Manuf. 10, 85–90 (2009)CrossRefGoogle Scholar
  7. 7.
    Yao, Y.L., Wang, X.M., Guo, J.J., Yang, X.W., Xu, B.S.: Tribological property of onion-like fullerenes as lubricant additive. Mater. Lett. 62, 2524–2527 (2008)CrossRefGoogle Scholar
  8. 8.
    Vengudusamy, B., Mufti, R.A., Lamb, G.D., Green, J.H., Spikes, H.A.: Friction properties of DLC/DLC contacts in base oil. Tribol. Int. 44, 922–932 (2011)CrossRefGoogle Scholar
  9. 9.
    Abdullah Tasdemir, H., Wakayama, M., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y., Higuchi, T.: Wear behaviour of tetrahedral amorphous diamond-like carbon (ta-C DLC) in additive containing lubricants. Wear 307, 1–9 (2013)CrossRefGoogle Scholar
  10. 10.
    Vetter, J.: 60 years of DLC coatings: historical highlights and technical review of cathodic arc processes to synthesize various DLC types, and their evolution for industrial applications. Surf. Coat. Technol. 257, 213–240 (2014)CrossRefGoogle Scholar
  11. 11.
    Sevilla, M., Fuertes, A.B.: The production of carbon materials by hydrothermal carbonization of cellulose. Carbon 47, 2281–2289 (2009)CrossRefGoogle Scholar
  12. 12.
    Zhao, H.Y., Lu, X.A., Wang, Y., Sun, B., Wu, X.H., Lu, H.F.: Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization. J. Mater. Sci. 52, 10787–10799 (2017)CrossRefGoogle Scholar
  13. 13.
    Machado, N.T., de Castro, D.A.R., Santos, M.C., Araújo, M.E., Lüder, U., Herklotz, L., Werner, M., Mumme, J., Hoffmann, T.: Process analysis of hydrothermal carbonization of corn Stover with subcritical H2O. J. Supercrit. Fluids 136, 110–122 (2018)CrossRefGoogle Scholar
  14. 14.
    Beckford, S., Cai, J., Chen, J., Zou, M.: Use of Au nanoparticle-filled PTFE films to produce low-friction and low-wear surface coatings. Tribol. Lett. 56, 223–230 (2014)CrossRefGoogle Scholar
  15. 15.
    Salah, N., Alshahrie, A., Abdel-wahab, M.S., Alharbi, N.D., Khan, Z.H.: Carbon nanotubes of oil fly ash integrated with ultrathin CuO nanosheets as effective lubricant additives. Diam. Relat. Mater. 78, 97–104 (2017)CrossRefGoogle Scholar
  16. 16.
    Song, W., Yan, J.C., Ji, H.B.: Tribological study of the SOCNTs@MoS2 composite as a lubricant additive: synergistic effect. Ind. Eng. Chem. Res. 57, 6878–6887 (2018)CrossRefGoogle Scholar
  17. 17.
    Anand, G., Saxena, P.: A review on graphite and hybrid nano-materials as lubricant additives. IOP Conf. Ser. 149, 012201 (2016)CrossRefGoogle Scholar
  18. 18.
    Chang, Q.Y., Rudenko, P., Miller, D.J., Wen, J.G., Berman, D., Zhang, Y.P., Arey, B., Zhu, Z.H., Erdemir, A.: Operando formation of an ultra-low friction boundary film from synthetic magnesium silicon hydroxide additive. Tribol. Int. 110, 35–40 (2017)CrossRefGoogle Scholar
  19. 19.
    Van Der Walt, I.J., Bruinsma, O.S.L.: Depolymerization of clean unfilled PTFE waste in a continuous process. J. Appl. Polym. Sci. 102, 2752–2759 (2006)CrossRefGoogle Scholar
  20. 20.
    Sugama, T., Sabatini, R., Petrakis, L.: Decomposition of chrysotile asbestos by fluorosulfonic acid. Ind. Eng. Chem. Res. 37, 79–88 (1998)CrossRefGoogle Scholar
  21. 21.
    Yamaguchi, A., Kido, H., Ukita, Y., Kishihara, M., Utsumi, Y.: Anisotropic pyrochemical microetching of poly(tetrafluoroethylene) initiated by synchrotron radiation-induced scission of molecule bonds. Appl. Phys. Lett. 108(5), 1–5 (2016)CrossRefGoogle Scholar
  22. 22.
    Anbalagan, G., Sivakumar, G., Prabakaran, A.R., Gunasekaran, S.: Spectroscopic characterization of natural chrysotile. Vib. Spectrosc. 52(2), 122–127 (2010)CrossRefGoogle Scholar
  23. 23.
    Ristić, M., Czakó-Nagy, I., Musić, S., Vértes, A.: Spectroscopic characterization of chrysotile asbestos from different regions. J. Mol. Struct. 993, 120–126 (2011)CrossRefGoogle Scholar
  24. 24.
    Liu, S., Gangopadhyay, S., Sreenivas, G., Ang, S., Naseem, H.: Infrared studies of hydrogenated amorphous carbon (a-C:H) and its alloys (a-C:H, N, F). Phys. Rev. B 55, 13020–13024 (1997)CrossRefGoogle Scholar
  25. 25.
    Tang, C.J., Neves, A.J., Carmo, M.C.: Infrared absorption study of hydrogen incorporation in thick nanocrystalline diamond films. Appl. Phys. Lett. 86, 1–3 (2005)Google Scholar
  26. 26.
    Llamas-Jansa, I., Jäger, C., Mutschke, H., Henning, T.: Far-ultraviolet to near-infrared optical properties of carbon nanoparticles produced by pulsed-laser pyrolysis of hydrocarbons and their relation with structural variations. Carbon 45, 1542–1557 (2007)CrossRefGoogle Scholar
  27. 27.
    Lua, A.C., Yang, T.: Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J. Colloid Interface Sci. 274(2), 594–601 (2004)CrossRefGoogle Scholar
  28. 28.
    Ferrari, A.C., Robertson, J.: Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64(7), 075414 (2001)CrossRefGoogle Scholar
  29. 29.
    Jawhari, T., Roid, A., Casado, J.: Raman spectroscopic characterization of some commercially available carbon black materials. Carbon 33, 557–563 (1990)Google Scholar
  30. 30.
    Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., Pöschl, U.: Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43, 1731–1742 (2005)CrossRefGoogle Scholar
  31. 31.
    Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordrred and amorphous carbon. Phys. Rev. B 61, 096–107 (1999)Google Scholar
  32. 32.
    Leung, T.Y., Man, W.F., Lim, P.K., Chan, W.C., Gaspari, F., Zukotynski, S.: Determination of the sp3/sp2 ratio of a-C: H by XPS and XAES. J. Non Cryst. Solids 254, 156–160 (1999)CrossRefGoogle Scholar
  33. 33.
    Schulze, R.K., Hill, M.A., Field, R.D., Papin, P.A., Hanrahan, R.J., Byler, D.D.: Characterization of carbonated serpentine using XPS and TEM. Energy Convers. Manage. 45, 3169–3179 (2004)CrossRefGoogle Scholar
  34. 34.
    Berman, D., Erdemir, A., Sumant, A.V.: Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59, 167–175 (2013)CrossRefGoogle Scholar
  35. 35.
    Baratto, C., Lottici, P.P., Bersani, D., Antonioli, G., Montenero, A.: Sol-Gel preparation of α-Fe2 O3 thin films: structural characterization by XAFS and Raman. J. Sol-Gel. Sci. Technol. 4, 667–671 (1998)CrossRefGoogle Scholar
  36. 36.
    Hanesch, M.: Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophys. J. Int. 177, 941–948 (2009)CrossRefGoogle Scholar
  37. 37.
    Thanos, I.C.G.: Electrochemical reduction of thermally prepared oxides of iron and iron-chromium alloys studied by in situ Raman spectroscopy. Electrochim. Acta 31, 1585–1595 (1986)CrossRefGoogle Scholar
  38. 38.
    Maslar, J.E., Hurst, W.S., Bowers, J.J., Hendricks, J.H.: In situ Raman spectroscopic investigation of stainless steel hydrothermal corrosion. Corrosion 58, 739–747 (2002)CrossRefGoogle Scholar
  39. 39.
    Wang, B., Chang, Q.Y., Gao, K., Fang, H.R., Qing, T., Zhou, N.N.: The synthesis of magnesium silicate hydroxide with different morphologies and the comparison of their tribological properties. Tribol. Int. 119, 672–679 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Jiaotong University, School of Mechanical, Electronic and Control EngineeringBeijingPeople’s Republic of China

Personalised recommendations