Advertisement

Tribology Letters

, 67:75 | Cite as

Frictional Contact Between the Diamond Tip and Graphene Step Edges

  • Nian Yin
  • Zhinan ZhangEmail author
  • Junyan Zhang
Original Paper
  • 99 Downloads

Abstract

Graphene has excellent lubricity because of its layer-stacking structure. However, after most fabricating processes, steps appear on the surface of graphene and can significantly affect its lubrication performance. Experimental studies often scratch the tip of Atomic force microscopy (AFM) on graphene to study the friction properties of graphene. Unfortunately, the friction mechanism between tips and graphene step edges is still unclear, especially when the effect of tip shape on friction at graphene edges is considered. This paper investigated the atomic friction at graphene step edges considering a new tip shape model: a cone of which the top is the sphere. First, each type of parameters of tip shape was discussed in detail to determine how they can influence the friction behavior at graphene step edges. Then, molecular dynamics (MD) simulation was used to analyze the specific changes of friction and graphene morphology with different parameters of tip shape. The results showed that the shape parameters have considerable effects on friction behavior during the tip slides on the graphene step edges. Therefore, this study can be used to design the tip shape for further investigation on the friction properties of graphene. More importantly, this paper is a good beginning of modeling tip shape considering physical effects rather than simple hemispheroid in MD simulations.

Keywords

Graphene step edges Friction MD simulations Tip shape 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant nos. 51575340, 51875343) and State Key Laboratory of Solid Lubrication Project (Grant no. LSL-1604). We are grateful to Prof. Ming Ma (Tsinghua University) for his useful comments.

References

  1. 1.
    Holmberg, K., Erdemir, A.: Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263–284 (2017)CrossRefGoogle Scholar
  2. 2.
    Singh, R.A., Siyuan, L., Satyanarayana, N., Kustandi, T.S., Sinha, S.K.: Bio-inspired polymeric patterns with enhanced wear durability for microsystem applications. Mater. Sci. Eng. C 31, 1577–1583 (2011)CrossRefGoogle Scholar
  3. 3.
    Ku, I.S.Y., Reddyhoff, T., Holmes, A.S., Spikes, H.A.: Wear of silicon surfaces in MEMS. Wear 271, 1050–1058 (2011)CrossRefGoogle Scholar
  4. 4.
    Burton, Z., Bhushan, B.: Hydrophobicity, adhesion, and friction properties of nanopatterned polymers and scale dependence for micro- and nanoelectromechanical systems. Nano Lett. 5, 1607–1613 (2015)CrossRefGoogle Scholar
  5. 5.
    Bhushan, B.: Nanotribology and nanomechanics of MEMS/NEMS and BioMEMS/BioNEMS materials and devices. Microelectron. Eng. 84, 387–412 (2007)CrossRefGoogle Scholar
  6. 6.
    Zdziennicka, A., Szymczyk, K., Krawczyk, J., Janczuk, B.: Some remarks on the solid surface tension determination from contact angle measurements. Appl. Surf. Sci. 405, 88–101 (2017)CrossRefGoogle Scholar
  7. 7.
    Zang, X., Zhou, Q., Chang, J., Liu, Y.M., Lin, L.W.: Graphene and carbon nanotube (CNT) in MEMS/NEMS applications. Microelectron. Eng. 132, 192–206 (2015)CrossRefGoogle Scholar
  8. 8.
    Berman, D., Krim, J.: Surface science, MEMS and NEMS: progress and opportunities for surface science research performed on, or by, microdevices. Prog. Surf. Sci. 88, 171–211 (2013)CrossRefGoogle Scholar
  9. 9.
    Liu, H., Bhushan, B.: Nanotribological characterization of molecularly thick lubricant films for applications to MEMS/NEMS by AFM. Ultramicroscopy 97, 321–340 (2003)CrossRefGoogle Scholar
  10. 10.
    Wang, F., Zhang, Y., Tian, C., Girit, C., Zettl, A., Crommie, M., et al.: Gate-variable optical transitions in graphene. Science 320, 206–209 (2008)CrossRefGoogle Scholar
  11. 11.
    Neto, A.H.C.: The electronic properties of graphene. Phys. Status Solidi A 244, 4106–4111 (2007)CrossRefGoogle Scholar
  12. 12.
    Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)CrossRefGoogle Scholar
  13. 13.
    Park, S., Lee, K.S., Bozoklu, G., Cai, W., Nguyen, S.T., Ruoff, R.S.: Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2, 572–578 (2008)CrossRefGoogle Scholar
  14. 14.
    Min, K., Aluru, N.R.: Mechanical properties of graphene under shear deformation. Appl. Phys. Lett. 98, 013113 (2015)CrossRefGoogle Scholar
  15. 15.
    Balandin, A.A., Ghosh, S., Bao, W.Z., Calizo, I., Teweldebrhan, D., Miao, F., et al.: Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)CrossRefGoogle Scholar
  16. 16.
    Geim, A.K.: Graphene: status and Prospects. Science 324, 1530–1534 (2010)CrossRefGoogle Scholar
  17. 17.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2009)CrossRefGoogle Scholar
  18. 18.
    Cihan, E., Ipek, S., Durgun, E., Baykara, M.Z.: Structural lubricity under ambient conditions. Nat. Commun. 7, 12055 (2016)CrossRefGoogle Scholar
  19. 19.
    Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)CrossRefGoogle Scholar
  20. 20.
    Elomaa, O., Singh, V.K., Iyer, A., Hakala, T.J., Koskinen, J.: Graphene oxide in water lubrication on diamond-like carbon vs. stainless steel high-load contacts. Diam. Relat. Mat. 52, 43–48 (2015)CrossRefGoogle Scholar
  21. 21.
    Mao, J.Y., Zhao, J., Wang, W., He, Y.Y., Luo, J.B.: Influence of the micromorphology of reduced graphene oxide sheets on lubrication properties as a lubrication additive. Tribol. Int. 119, 614–621 (2018)CrossRefGoogle Scholar
  22. 22.
    Zheng, D., Cai, Z.B., Shen, M.X., Li, Z.Y., Zhu, M.H.: Investigation of the tribology behavior of the graphene nanosheets as oil additives on textured alloy cast iron surface. Appl. Surf. Sci. 387, 66–75 (2016)CrossRefGoogle Scholar
  23. 23.
    Gupta, B., Kumar, N., Titovich, K.A., Ivanovich, K.V., Vyacheslavovich, S.A., Dash, S.: Lubrication properties of chemically aged reduced graphene-oxide additives. Surf. Interfaces 7, 6–13 (2017)CrossRefGoogle Scholar
  24. 24.
    Tomala, A., Karpinska, A., Werner, W.S.M., Olver, A., Stori, H.: Tribological properties of additives for water-based lubricants. Wear 269, 804–810 (2009)CrossRefGoogle Scholar
  25. 25.
    Zeng, X.Z., Peng, Y.T., Yu, M.C., Lang, H.J., Cao, X.A., Zou, K.: Dynamic sliding enhancement on friction and adhesion of graphene, graphene oxide and fluorinated graphene. ACS Appl. Mater. Interfaces 10, 8214–8224 (2018)CrossRefGoogle Scholar
  26. 26.
    Xu, Q., Li, X., Zhang, J., Hu, Y.Z., Wang, H., Ma, T.B.: Suppressing nanoscale wear by graphene/graphene interfacial contact architecture: a molecular dynamics study. ACS Appl. Mater. Interfaces 9, 40959–40968 (2017)CrossRefGoogle Scholar
  27. 27.
    Holscher, H., Ebeling, D., Schwarz, U.D.: Friction at atomic-scale surface steps: experiment and theory. Phys. Rev. Lett. 101, 246105 (2008)CrossRefGoogle Scholar
  28. 28.
    Dong, Y.L., Li, Q.Y., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31, 030801 (2013)CrossRefGoogle Scholar
  29. 29.
    Lalmi, B., Oughaddou, H., Enriquez, H., Kara, A., Vizzini, S., Ealet, B., et al.: Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 97, 223109 (2010)CrossRefGoogle Scholar
  30. 30.
    Storm, M.M., Overgaard, M., Younesi, R., Reeler, N.E.A., Vosch, T., Nielsen, U.G., et al.: Reduced graphene oxide for Li-air batteries: the effect of oxidation time and reduction conditions for graphene oxide. Carbon 85, 233–244 (2015)CrossRefGoogle Scholar
  31. 31.
    Qian, W., Hao, R., Hou, Y.L., Tian, Y., Shen, C.M., Gao, H.J., et al.: Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano. Res. 2, 706–712 (2009)CrossRefGoogle Scholar
  32. 32.
    Ye, Z.J., Martini, A.: Atomic friction at exposed and buried graphite step edges: experiments and simulations. Appl. Phys. Lett. 106, 231603 (2015)CrossRefGoogle Scholar
  33. 33.
    Vasic, B., Matkovic, A., Gajic, R., Stankovic, I.: Wear properties of graphene edges probed by atomic force microscopy based lateral manipulation. Carbon 107, 723–732 (2016)CrossRefGoogle Scholar
  34. 34.
    Dong, Y.L., Liu, X.Z., Egberts, P., Ye, Z.J., Carpick, R.W., Martini, A.: Correlation between probe shape and atomic friction peaks at graphite step edges. Tribol. Lett. 50, 49–57 (2013)CrossRefGoogle Scholar
  35. 35.
    Mo, Y.F., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009)CrossRefGoogle Scholar
  36. 36.
    Qi, Y.Z., Liu, J., Zhang, J., Dong, Y.L., Li, Q.Y.: Wear resistance limited by step edge failure: the rise and fall of graphene as an atomically thin lubricating material. ACS Appl. Mater. Interfaces 9, 1099–1106 (2017)CrossRefGoogle Scholar
  37. 37.
    Hunley, D.P., Flynn, T.J., Dodson, T., Sundararajan, A., Boland, M.J., Strachan, D.R.: Friction, adhesion, and elasticity of graphene edges. Phys. Rev. B. 87, 035417 (2013)CrossRefGoogle Scholar
  38. 38.
    Ye, Z.J., Otero-de-la-Roza, A., Johnson, E.R., Martini, A.: Effect of tip shape on atomic-friction at graphite step edges. Appl. Phys. Lett. 103, 081601 (2013)CrossRefGoogle Scholar
  39. 39.
    Cannara, R.J., Brukman, M.J., Cimatu, K., Sumant, A.V., Baldelli, S., Carpick, R.W.: Nanoscale friction varied by isotopic shifting of surface vibrational frequencies. Science 318, 780–783 (2007)CrossRefGoogle Scholar
  40. 40.
    Zhou, Y.G., Chen, Y.L., Liu, B., Wang, S.T., Yang, Z.Y., Hu, M.: Mechanics of nanoscale wrinkling of graphene on a non-developable surface. Carbon 84, 263–271 (2015)CrossRefGoogle Scholar
  41. 41.
    Rappe, A.K., Casewit, C.J., Colwell, K.S., Goddard, W.A., Skiff, W.M.: UFF, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mechanical EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of ScienceLanzhouChina

Personalised recommendations