Advertisement

Tribology Letters

, 67:70 | Cite as

The Tribological Performances of the Boron Carbide Films Tested under Wet Air and Wet N2 Conditions

  • Xueqian Cao
  • Lunlin Shang
  • Yongmin Liang
  • Guangan ZhangEmail author
  • Zhibin LuEmail author
  • Qunji Xue
Original Paper
  • 101 Downloads

Abstract

In the previous literatures, the friction reduction of boron carbide (B4C) with the increasing relative humidity was mainly attributed to the formation of boric acid during the friction tests. In the present investigation, however, low friction coefficient was obtained under wet air (85% RH) without the formation of boric acid, suggesting that there is another low friction mechanism. Furthermore, low friction coefficient was also achieved under wet N2 (85% RH, without O2) without the formation of boric acid, implying that the core factor for the friction reduction is water vapor rather than oxygen. Therefore, we infer that the adsorption of H2O on the passivated boron carbide surface is the main reason for the reduction of friction coefficient. It should be noted that friction coefficients under wet air were lower than that under wet N2, which demonstrates that O2 plays a secondary role to reduce friction coefficient.

Keywords

Boron carbide film Wet air Wet N2 Passivation A nanoscale water layer 

Notes

Acknowledgements

The authors are grateful for the financial support from the National Key R&D Program of China (No. 2018YFB0703801) and the National Natural Science Foundation of China (No. 51775535).

References

  1. 1.
    Thévenot, F.: Boron carbide—A comprehensive review. J. Eur. Ceram. Soc. 6, 205–225 (1990)CrossRefGoogle Scholar
  2. 2.
    Vast, N., Lazzari, R., Besson, J.M., Baroni, S., Corso, A.D.: Atomic structure and vibrational properties of icosahedral α-boron and B 4 C boron carbide. Comput. Mater. Sci. 17, 127–132 (1999)CrossRefGoogle Scholar
  3. 3.
    Domnich, V., Reynaud, S., Haber, R.A., Chhowalla, M.: Boron carbide: structure, properties, and stability under stress. J. Am. Ceram. Soc. 94, 3605–3628 (2011)CrossRefGoogle Scholar
  4. 4.
    Andrievski, R.A.: Micro- and nanosized boron carbide: synthesis, structure and properties. Russ. Chem. Rev. 81, 549–559 (2012)CrossRefGoogle Scholar
  5. 5.
    Pradhan, P.C., Majhi, A., Nayak, M.: Optical performance of W/B4C multilayer mirror in the soft x-ray region. J. Appl. Phys. 123, 095302 (2018)CrossRefGoogle Scholar
  6. 6.
    Jarvis, E.: High-velocity ballistic impact with boron carbide produces localized amorphization. MRS Bull. 28, 333 (2003)CrossRefGoogle Scholar
  7. 7.
    Sun, Y., Zhang, C., He, L., Meng, Q., Liu, B.C., Gao, K., et al.: Enhanced bending strength and thermal conductivity in diamond/Al composites with B4C coating. Sci. Rep. 8(1), 11104 (2018)CrossRefGoogle Scholar
  8. 8.
    Luo, G., Lu, J., Liu, J., Mei, W.-N., Dowben, P.A.: Insights into the local electronic structure of semiconducting boron carbides in the vicinity of transition metal dopants. Mat. Sci. Eng. B 175, 1–8 (2010)CrossRefGoogle Scholar
  9. 9.
    Alizadeh, A., Taheri-Nassaj, E.: Wear behavior of nanostructured Al and Al-B4C nanocomposites produced by mechanical milling and hot extrusion. Tribol. Lett. 44, 59–66 (2011)CrossRefGoogle Scholar
  10. 10.
    Erdemir, A., Bindal, C., Fenske, G.R.: Formation of ultraflow friction surface films on boron carbide. Appl. Phys. Lett. 68, 1637–1639 (1996)CrossRefGoogle Scholar
  11. 11.
    Cuong, P.D., Ahn, H.S., Yoon, E.S., Shin, K.H.: Effects of relative humidity on tribological properties of boron carbide coating against steel. Surf. Coat. Technol. 201, 4230–4235 (2006)CrossRefGoogle Scholar
  12. 12.
    Bhowmick, S., Sun, G., Alpas, A.T.: Low friction behaviour of boron carbide coatings (B4C) sliding against Ti-6Al-4V. Surf. Coat. Technol. 308, 316–327 (2016)CrossRefGoogle Scholar
  13. 13.
    Larsson, P., Axén, N., Hogmark, S.: Tribofilm formation on boron carbide in sliding wear. Wear 236, 73–80 (1999)CrossRefGoogle Scholar
  14. 14.
    Sonber, J.K., Limaye, P.K., Murthy, T.S.R.C., Sairam, K., Nagaraj, A., Soni, N.L., et al.: Tribological properties of boron carbide in sliding against WC ball. Int. J. Refract Metal Hard Mater. 51, 110–117 (2015)CrossRefGoogle Scholar
  15. 15.
    Pan, W., Gao, Y., Li, X., Wu, S., Song, L., Zhong, Z.: Tribological behavior of B4C/hbn ceramic composites sliding against gray cast irons without lubrication. Tribol. Lett. 60, 10 (2015)CrossRefGoogle Scholar
  16. 16.
    Li, X., Gao, Y., Pan, W., Zhong, Z., Song, L., Chen, W., et al.: Effect of hBN content on the friction and wear characteristics of B 4 C–hBN ceramic composites under dry sliding condition. Ceram. Int. 41, 3918–3926 (2014)CrossRefGoogle Scholar
  17. 17.
    Li, X., Gao, Y., Song, L., Yang, Q., Wei, S., You, L., et al.: Influences of hBN content and test mode on dry sliding tribological characteristics of B4C-hBN ceramics against bearing steel. Ceram. Int. 44, 6443–6450 (2018)CrossRefGoogle Scholar
  18. 18.
    Erdemir, A., Fenske, G.R., Krauss, A.R., Gruen, D.M., McCauley, T., Csencsits, R.T.: Tribological properties of nanocrystalline diamond films. Surf. Coat. Technol. 120–121, 565–572 (1999)CrossRefGoogle Scholar
  19. 19.
    Konicek, A.R., Grierson, D.S., Sumant, A.V., Friedmann, T.A., Sullivan, J.P., Gilbert, P.U.P.A., et al.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, 543–548 (2012)CrossRefGoogle Scholar
  20. 20.
    Bouchet, M.I.D.B., Zilibotti, G., Matta, C., Righi, M.C., Vandenbulcke, L., Vacher, B., et al.: Friction of diamond in the presence of water vapor and hydrogen gas. Coupling gas-phase lubrication and first-principles studies. J. Phys. Chem. C 116, 6966–6972 (2012)CrossRefGoogle Scholar
  21. 21.
    Bhowmick, S., Banerji, A., Alpas, A.T.: Role of humidity in reducing sliding friction of multilayered graphene. Carbon 87, 374–384 (2015)CrossRefGoogle Scholar
  22. 22.
    Cui, L., Lu, Z., Wang, L.: Probing the low-friction mechanism of diamond-like carbon by varying of sliding velocity and vacuum pressure. Carbon 66, 259–266 (2014)CrossRefGoogle Scholar
  23. 23.
    Beauvy, M.: Stoichiometric limits of carbon-rich boron carbide phases. J. Less-Common Met. 90, 169–175 (1983)CrossRefGoogle Scholar
  24. 24.
    Yue, Z.R., Jiang, W., Wang, L., Gardner Jr., S.D., Pittman, C.U.P.: Surface characterization of electrochemically oxidized carbon fibers. Carbon 37, 1785–1796 (1999)CrossRefGoogle Scholar
  25. 25.
    Balazs, D.J., Triandafillu, K., Wood, P., Chevolot, Y., Van, D.C., Harms, H., et al.: Inhibition of bacterial adhesion on PVC endotracheal tubes by RF-oxygen glow discharge, sodium hydroxide and silver nitrate treatments. Biomaterials 25, 2139–2151 (2004)CrossRefGoogle Scholar
  26. 26.
    Hu, T., Steihl, L., Rafaniello, W., Fawcett, T., Hawn, D.D., Mashall, J.G., et al.: Structures and properties of disordered boron carbide coatings generated by magnetron sputtering. Thin Solid Films 332, 80–86 (1998)CrossRefGoogle Scholar
  27. 27.
    Harris, S.J., Krauss, G.G., Simko, S.J., Baird, R.J., Gebremariam, S.A., Doll, G.: Abrasion and chemical–mechanical polishing between steel and a sputtered boron carbide coating. Wear 252, 161–169 (2002)CrossRefGoogle Scholar
  28. 28.
    Erdemir, A., Bindal, C., Zuiker, C., Savrun, E.: Tribology of naturally occurring boric acid films on boron carbide. Surf. Coat. Technol. 86–87, 507–510 (1996)CrossRefGoogle Scholar
  29. 29.
    And, D.B.A., Kim, S.H.: Evolution of the adsorbed water layer structure on silicon oxide at room temperature. J. Phys. Chem. B 109, 16760–16763 (2005)CrossRefGoogle Scholar
  30. 30.
    Marino, M.J., Hsiao, E., Bradley, L.C., Eryilmaz, O.L., Erdemir, A., Kim, S.H.: Is ultra-low friction needed to prevent wear of diamond-like carbon (DLC)? An alcohol vapor lubrication study for stainless steel/DLC interface. Tribol. Lett. 42, 285 (2011)CrossRefGoogle Scholar
  31. 31.
    Barthel, A.J., Alazizi, A., Surdyka, N.D., Kim, S.H.: Effects of gas or vapor adsorption on adhesion, friction, and wear of solid interfaces. Langmuir 30, 2977–2992 (2014)CrossRefGoogle Scholar
  32. 32.
    Arif, T., Colas, G., Filleter, T.: Effect of humidity and water intercalation on the tribological behavior of graphene and graphene oxide. ACS Appl. Mater. Interfaces. 10, 22537–22544 (2018)CrossRefGoogle Scholar
  33. 33.
    Levita, G., Kajita, S., Righi, M.C.: Water adsorption on the diamond (111) surfaces: an ab initio study. Carbon 127, 53–540 (2018)CrossRefGoogle Scholar
  34. 34.
    Opitz, A., Ahmed, I.U., Schaefer, J.A., Scherge, M.: Friction of thin water films: a nanotribological study. Surf. Sci. 504, 199–207 (2002)CrossRefGoogle Scholar
  35. 35.
    Krott, L.B., Barbosa, M.C.: Model of waterlike fluid under confinement for hydrophobic and hydrophilic particle-plate interaction potentials. Phys. Rev. E: Stat. 89, 012110 (2014)CrossRefGoogle Scholar
  36. 36.
    Kuwahara, T., Moras, G., Moseler, M.: Friction regimes of water-lubricated diamond (111): role of interfacial ether groups and tribo-induced aromatic surface reconstructions. Phys. Rev. Lett. 119, 096101 (2017)CrossRefGoogle Scholar
  37. 37.
    Khare, H.S., Burris, D.L.: The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 52, 485–493 (2013)CrossRefGoogle Scholar
  38. 38.
    Guo, H., Qi, Y.: Environmental conditions to achieve low adhesion and low friction on diamond surfaces. Model. Simul. Mater. Sci. Eng. 18, 034008 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouChina
  2. 2.State Key Laboratory of Applied Organic ChemistryLanzhou UniversityLanzhouChina
  3. 3.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingChina

Personalised recommendations