Skip to main content
Log in

Water-Soluble Graphene Quantum Dots as High-Performance Water-Based Lubricant Additive for Steel/Steel Contact

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this work, graphene quantum dots (GQDs) were firstly synthesized via a simple hydrothermal route and then its tribological performances as water-based lubricant additive were evaluated for the first time. The morphological observation by transmission electron microscope indicates that uniform and monodispersed GQDs with a mean diameter of about 2 nm can be obtained. Fourier transfer infrared spectroscopy and X-ray photoelectron spectroscopy characterizations demonstrate that there are abundant hydrophilic groups existed on the as-prepared GQDs including hydroxyl, epoxy, and carbonyl groups, endowing GQDs with good dispersibility in water. Moreover, the tribological performances are investigated by optimal-SRV-IV reciprocation friction tester, and the results indicated that both the friction coefficient and the wear rate of water can be largely reduced through adding the appropriate amount of GQDs. As a result, compared with graphene oxide, GQD was more effective to enhance the tribological performances of water at the relatively low concentration. When the concentration of GQDs aqueous dispersion is 4 mg/mL, the corresponding sample of GQDs-4 shows the excellent tribological performances with a 42.5% reduction of friction coefficient and a 58.5% decrease of wear rate compared with those of the water. These promising performances demonstrate that the prepared GQDs can be employed as a novel water-based lubricant additive to greatly enhance the tribological performances of the water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen, C., Wu, B., Chung, C., Li, W., Chien, C., Wu, P.: Low-friction characteristics of nanostructured surfaces on silicon carbide for water-lubricated seals. Tribol. Lett. 51, 127–133 (2013)

    Article  CAS  Google Scholar 

  2. Raviv, U., Giasson, S., Kampf, N., Gohy, J.F., Jerome, R., Klein, J.: Lubrication by charged polymers. Nature 425, 163–165 (2003)

    Article  CAS  Google Scholar 

  3. Tomala, A., Karpinska, A., Werner, W., Olver, A., Störi, H.: Tribological properties of additives for water-based lubricants. Wear 269, 804–810 (2010)

    Article  CAS  Google Scholar 

  4. Ye, X., Ma, L., Yang, Z., Wang, J., Wang, H., Yang, S.: Covalent functionalization of fluorinated graphene and subsequent application as water-based lubricant additive. ACS Appl. Mater. Interfaces 8, 7483–7488 (2016)

    Article  CAS  Google Scholar 

  5. Ma, H., Li, J., Chen, H., Zuo, G., Yu, Y., Ren, T.: XPS and XANES characteristics of tribofilms and thermal films generated by two P-and/or S-containing additives in water-based lubricant. Tribol. Int. 42, 940–945 (2009)

    Article  CAS  Google Scholar 

  6. Cambiella, Á., Benito, J., Pazos, C., Coca, J.: Interfacial properties of oil-in-water emulsions designed to be used as metalworking fluids. Colloids Surf. A 305, 112–119 (2007)

    Article  CAS  Google Scholar 

  7. Kinoshita, H., Nishina, Y., Alias, A.A., Fujii, M.: Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66, 720–723 (2014)

    Article  CAS  Google Scholar 

  8. Ta, T.D., Tieu, A.K., Zhu, H., Zhu, Q., Kosasih, P.B., Zhang, J.: Tribological behavior of aqueous copolymer lubricant in mixed lubrication regime. ACS Appl. Mater. Interfaces 8, 5641–5652 (2016)

    Article  CAS  Google Scholar 

  9. Li, Z., Ma, S., Zhang, G., Wang, D., Zhou, F.: Soft/hard-coupled amphiphilic polymer nanospheres for water lubrication. ACS Appl. Mater. Interfaces 10, 9178–9187 (2018)

    Article  CAS  Google Scholar 

  10. Hernández Battez, A., González, R., Viesca, J.L., Fernández, J.E., Diaz Fernández, J.M., Machado, A.: CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265, 422–428 (2008)

    Article  Google Scholar 

  11. Chiñas Castillo, F., Lara-Romero, J., Alonso Núñez, G., Barceinas Sánchez, J., Jiménez Sandoval, S.: MoS2 films formed by in-contact decomposition of water-soluble tetraalkylammonium thiomolybdates. Tribol. Lett. 29, 155–161 (2008)

    Article  Google Scholar 

  12. Ratoi, M., Niste, V.B., Zekonyte, J.: WS2 nanoparticles-potential replacement for ZDDP and friction modifier additives. RSC Adv. 4, 21238–21245 (2014)

    Article  CAS  Google Scholar 

  13. Min, Y.J., Akbulut, M., Belman, N., Golan, Y., Zasadzinski, J., Israelachvili, J.: Nano Lett. 8, 246–252 (2008)

    Article  CAS  Google Scholar 

  14. Jiang, G.C., Guan, W.C., Zheng, Q.X.: A study on fullerene-acrylamide copolymer nanoball-a new type of water-based lubrication additive. Wear 258, 1625–1629 (2005)

    Article  CAS  Google Scholar 

  15. Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 25, 247–253 (2007)

    Article  CAS  Google Scholar 

  16. Song, H., Li, N.: Frictional behavior of oxide graphene nanosheets as water-base lubricant additive. Appl. Phys. A 105, 827–832 (2011)

    Article  CAS  Google Scholar 

  17. Hunter, C.N., Check, M.H., Hager, C.H., Voevodin, A.A.: Tribological properties of carbon nanopearls synthesized by nickel-catalyzed chemical vapor deposition. Tribol. Lett. 30, 169–176 (2008)

    Article  CAS  Google Scholar 

  18. Hirata, A., Igarashi, M., Kaito, T.: Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles. Tribol. Int. 37, 899–905 (2004)

    Article  CAS  Google Scholar 

  19. Dennis, J.E., Jin, K., John, V.T., Pesika, N.S.: Carbon microsphere as ball bearings in aqueous-based lubrication. ACS Appl. Mater. Interfaces 3, 2215–2218 (2011)

    Article  Google Scholar 

  20. Jin, S.H., Kim, D.H., Jun, G.H., Hong, S.H., Jeon, S.: Tuning the photoluminescence of graphene quantum dots through the charge transfer effect of functional groups. ACS Nano 7, 1239–1245 (2013)

    Article  CAS  Google Scholar 

  21. Li, Y., Hu, Y., Zhao, Y., Shi, G., Deng, L., Hou, Y.: An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics. Adv. Mater. 23, 776–779 (2011)

    Article  Google Scholar 

  22. Ponomarenko, L.A., Schedin, F., Katsnelson, M.L., Yang, R., Hill, E.W., Novoselov, K.S.: Chaotic dirac billiard in graphene quantum dots. Science 320, 356–358 (2008)

    Article  CAS  Google Scholar 

  23. Li, X., Rui, M., Song, J., Shen, Z., Zeng, H.: Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv. Funct. Mater. 25, 4929–4947 (2015)

    Article  CAS  Google Scholar 

  24. Zhang, W., Cao, Y., Tian, P., Guo, F., Tian, Y., Zheng, W., Ji, X., Liu, J.: Soluble, exfoliated two-dimensional nanosheets as excellent aqueous lubricants. ACS Appl. Mater. Interfaces 8, 32440–32449 (2016)

    Article  CAS  Google Scholar 

  25. Peng, J., Gao, W., Gupta, B.K., Liu, Z., Romero Aburto, R., Ge, L.: Graphene quantum dots derived from carbon fibers. Nano Lett. 12, 844–849 (2012)

    Article  CAS  Google Scholar 

  26. Li, W., Li, M., Liu, Y., Pan, D., Li, Z., Wang, L.: Three minute ultrarapid microwave-assisted synthesis of bright fluorescent graphene quantum dots for live cell staining and white LEDs. ACS Appl. Nano Mater. 1, 1623–1630 (2018)

    Article  CAS  Google Scholar 

  27. Hai, X., Guo, Z., Lin, X., Chen, X., Wang, J.: Fluorescent TPA@GQDs probe for sensitive assay and quantitative imaging of hydroxyl radicals in living cells. ACS Appl. Mater. Interfaces 10, 5853–5861 (2018)

    Article  CAS  Google Scholar 

  28. Wang, G., Wang, B., Park, J., Yang, J., Shen, X., Yao, J.: Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon 47, 68–72 (2009)

    Article  CAS  Google Scholar 

  29. Dong, Y., Shao, J., Chen, C., Li, H., Wang, R., Chi, Y., Lin, X., Chen, G.: Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid. Carbon 50, 4738–4743 (2012)

    Article  CAS  Google Scholar 

  30. Zhou, X., Zhang, Y., Wang, C., Wu, X., Yang, Y., Zheng, B.: Photo-fenton reaction of graphene oxide: a new strategy to prepare graphene quantum dots for DNA cleavage. ACS Nano 6, 6592–6599 (2012)

    Article  CAS  Google Scholar 

  31. He, P., Sun, J., Tian, S., Yang, S., Ding, S., Ding, G.: Processable aqueous dispersions of graphene stabilized by graphene quantum dots. Chem. Mater. 27, 218–226 (2015)

    Article  CAS  Google Scholar 

  32. Wang, L., Wang, Y., Xu, T., Liao, H., Yao, C., Liu, Y.: Gram-scale synthesis of single crystalline graphene quantum dots with superior optical properties. Nat. Commun. 5, 5357 (2014)

    Article  CAS  Google Scholar 

  33. Wang, S., Chen, Z., Cole, I., Li, Q.: Structural evolution of graphene quantum dots during thermal decomposition of citric acid and the corresponding photoluminescence. Carbon 82, 304–313 (2015)

    Article  CAS  Google Scholar 

  34. Tang, L., Ji, R., Cao, X., Lin, J., Jiang, H., Li, X.: Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots. ACS Nano 6, 5102–5112 (2012)

    Article  CAS  Google Scholar 

  35. Luo, Z., Lu, Y., Somers, L.A., Charlie Johnson, A.T.: High yield preparation of macroscopic graphene oxide membranes. J. Am. Chem. Soc. 131, 898–899 (2009)

    Article  CAS  Google Scholar 

  36. Pan, B., Zhang, J., Li, Z., Wu, M.: Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv. Mater. 2010(22), 734–738 (2010)

    Article  Google Scholar 

  37. Zhuo, S., Shao, M., Lee, S.: Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis structural evolution of graphene quantum dots. ACS Nano 6, 1059–1064 (2012)

    Article  CAS  Google Scholar 

  38. Gong, P., Yang, Z., Hong, W., Wang, Z., Hou, K., Wang, J.: To lose is to gain: effective synthesis of water-soluble graphene fluoroxide quantum dots by sacrificing certain fluorine atoms from exfoliated fluorinated graphene. Carbon 83, 152–161 (2015)

    Article  CAS  Google Scholar 

  39. Xu, S., Li, D., Wu, P.: One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv. Funct. Mater. 25, 1127–1135 (2015)

    Article  CAS  Google Scholar 

  40. Liu, W., Feng, Y., Yan, X., Chen, J., Xue, Q.: Superior micro-supercapacitors based on graphene quantum dots. Adv. Funct. Mater. 23, 4111–4122 (2013)

    Article  CAS  Google Scholar 

  41. Wu, X., Gong, K., Zhao, G., Lou, W., Wang, X., Liu, W.: MoS2/WS2 quantum dots as high-performance lubricant additive in polyalkylene glycol for steel/steel contact at elevated temperature. Adv. Mater. Interfaces 5, 1700859 (2017)

    Article  Google Scholar 

  42. Wang, B., Tang, W., Lu, H., Huang, Z.: Ionic liquid capped carbon dots as a high performance friction-reducing and antiwear additive for poly (ethylene glycol). J. Mater. Chem. A 4, 7257–7265 (2016)

    Article  CAS  Google Scholar 

  43. Wang, H., Liu, Y., Chen, Z., Wu, B., Xu, S., Luo, J.: Layered double hydroxide nanoplatelets with excellent tribological properties under high contact pressure as water-based lubricant additives. Sci. Rep. 6, 22748 (2016)

    Article  CAS  Google Scholar 

  44. Kajdas, C.: Importance of anionic reactive intermediates for lubricant component reactions with friction surfaces. Lubr. Sci. 6, 203–228 (1994)

    Article  CAS  Google Scholar 

  45. He, C., Yan, H., Wang, X., Bai, M.: Graphene quantum dots prepared by gaseous detonation toward excellent friction-reducing and antiwear additives. Diam. Relat. Mater. 89, 293–300 (2018)

    Article  CAS  Google Scholar 

  46. Shang, W., Cai, T., Zhang, Y., Liu, D., Liu, S.: Facile one pot pyrolysis synthesis of carbon quantum dots and graphene oxide nanomaterials: all carbon hybrids as eco-environmental lubricants for low friction and remarkable wear-resistance. Tribol. Int. 118, 373–380 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (Grant Nos. 51575507, 51675514, and 51805518).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kaiming Hou or Jinqing Wang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest, the authors Ruibin Qiang and Lifang Hu should be considered as co-first  authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 577 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiang, R., Hu, L., Hou, K. et al. Water-Soluble Graphene Quantum Dots as High-Performance Water-Based Lubricant Additive for Steel/Steel Contact. Tribol Lett 67, 64 (2019). https://doi.org/10.1007/s11249-019-1177-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1177-4

Keywords

Navigation