Skip to main content
Log in

In Situ Synthesized Phosphate-based Ionic Liquids as High-Performance Lubricant Additives

  • Original paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

A new series of tricresyl phosphate (TCP)-based ionic liquids (ILs) were synthesized by mixing TCP with lithium bis(trifluoromethylsulfonyl) imide (LiTFSI). Their tribological properties in pentaerythritol ester were investigated using an Optimol SRV oscillating friction and wear tester. LiTFSI/TCP (0.75/1 molar ratio, TCPL3) exhibits the best friction-reducing and antiwear properties under given experimental conditions. Compared with conventional lubricant additive TCP, TCPL3 could significantly improve the tribological properties of polyol ester, especially under high-temperature condition. Worn surfaces were analyzed using scanning electron microscope (SEM) and X-ray photoelectron spectrometer (XPS). Surface analysis demonstrates that the outstanding lubricating properties are attributed to the formation of boundary film which is composed of iron fluoride, lithium phosphate, and lithium polyphosphates. Unexpectedly, a remarkable synergistic effect between TCPL3 and typical high-temperature antioxidant N-phenyl-α-naphthylamine in terms of antioxidation property was also observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Snyder, C.E., Dolle, R.E.: Development of polyperfluoroalkylethers as high temperature lubricants and hydraulic fluids. ASLE Trans. 19(3), 171–180 (1976)

    Article  CAS  Google Scholar 

  2. Wu, J., Lu, X., Feng, X., Shi, Y.: Halogen-free ionic liquids as excellent lubricants for PEEK-stainless steel contacts at elevated temperatures. Tribol. Int. 104, 1–9 (2016)

    Article  Google Scholar 

  3. Yokoyama, F.: Application: estimation of service lives and operating temperature ranges of high-temperature lubricating oils using thermal analysis. J. Phys. Sci. Appl. 4(8), 516–523 (2014)

    Google Scholar 

  4. Bartl, P., Völkl, C.: Thermo-oxidative stability of high-temperature stability polyol ester jet engine oils—a comparison of test methods. Lubr. Sci. 17(3), 179–189 (2000)

    Article  Google Scholar 

  5. Gohardani, A.S., Doulgeris, G., Singh, R.: Challenges of future aircraft propulsion: a review of distributed propulsion technology and its potential application for the all electric commercial aircraft. Prog. Aerosp. Sci. 47(5), 369–391 (2011)

    Article  Google Scholar 

  6. Ohnabe, H., Masaki, S., Onozuka, M., Miyahara, K., Sasa, T.: Manufacturing: potential application of ceramic matrix composites to aero-engine components. Compos. Part A 30(4), 489–496 (1999)

    Article  Google Scholar 

  7. El-Magly, I.A., Nagib, H.K., Mokhtar, W.M.: Aspects of the behavior of some pentaerythritol ester base synlubes for turbo-engines. Egypt. J. Pet. 22(1), 169–177 (2013)

    Article  Google Scholar 

  8. Sianesi, D., Zamboni, V., Fontanelli, R., Binaghi, M.J.W.: Perfluoropolyethers: their physical properties and behaviour at high and low temperatures. Wear 18(2), 85–100 (1971)

    Article  CAS  Google Scholar 

  9. Nader, B.S., Kar, K.K., Morgan, T.A., Pawloski, C.E., Dilling, W.L.: Development and tribological properties of new cyclotriphosphazene high temperature lubricants for aircraft gas turbine engines. Tribol. Trans. 35(1), 37–44 (1992)

    Article  CAS  Google Scholar 

  10. Smith, R., Walowit, J., McGrew, J.M.: Elastohydrodynamic traction characteristics of 5P4E polyphenyl ether. J. Lubr. Technol. 95(3), 353–360 (1973)

    Article  CAS  Google Scholar 

  11. Zeng, Z., Phillips, B.S., Xiao, J.-C., Shreeve, J.N.M.: Polyfluoroalkyl, polyethylene glycol, 1, 4-bismethylenebenzene, or 1, 4-bismethylene-2, 3, 5, 6-tetrafluorobenzene bridged functionalized dicationic ionic liquids: synthesis and properties as high temperature lubricants. Chem. Mater. 20(8), 2719–2726 (2008)

    Article  CAS  Google Scholar 

  12. Wu, X., Wang, X., Liu, W.J.R.A.: Tribological properties of naphthyl phenyl diphosphates as antiwear additive in polyalkylene glycol and polyurea grease for steel/steel contacts at elevated temperature. RSC Adv. 4(12), 6074–6082 (2014)

    Article  CAS  Google Scholar 

  13. Chen, Z., Liu, X., Liu, Y., Gunsel, S., Luo, J.: Ultrathin MoS2 nanosheets with superior extreme pressure property as boundary lubricants. Sci. Rep. 5, 12869 (2015)

    Article  CAS  Google Scholar 

  14. Bermudez, M.D., Jimenez, A.E., Sanes, J., Carrion, F.J.: Ionic liquids as advanced lubricant fluids. Molecules 14(8), 2888–2908 (2009)

    Article  CAS  Google Scholar 

  15. Minami, I.: Ionic liquids in tribology. Molecules 14(6), 2286–2305 (2009)

    Article  CAS  Google Scholar 

  16. Zhang, S., Hu, L., Qiao, D., Feng, D., Wang, H.: Vacuum tribological performance of phosphonium-based ionic liquids as lubricants and lubricant additives of multialkylated cyclopentanes. Tribol. Int. 66, 289–295 (2013)

    Article  CAS  Google Scholar 

  17. Yu, B., Bansal, D.G., Qu, J., Sun, X., Luo, H., Dai, S., Blau, P.J., Bunting, B.G., Mordukhovich, G., Smolenski, D.J.J.W.: Oil-miscible and non-corrosive phosphonium-based ionic liquids as candidate lubricant additives. Wear 289, 58–64 (2012)

    Article  CAS  Google Scholar 

  18. Huang, G., Yu, Q., Cai, M., Zhou, F., Liu, W.: Investigation of the lubricity and antiwear behavior of guanidinium ionic liquids at high temperature. Tribol. Int. 114, 65–76 (2017)

    Article  CAS  Google Scholar 

  19. Jimenez, A.-E., Bermúdez, M.D.: Ionic liquids as lubricants for steel–aluminum contacts at low and elevated temperatures. Tribol. Lett. 26(1), 53–60 (2007)

    Article  CAS  Google Scholar 

  20. Fan, M., Liang, Y., Zhou, F., Liu, W.: Dramatically improved friction reduction and wear resistance by in situ formed ionic liquids. RSC Adv. 2(17), 6824–6830 (2012)

    Article  CAS  Google Scholar 

  21. Fan, M., Song, Z., Liang, Y., Zhou, F., Liu, W.: In situ formed ionic liquids in synthetic esters for significantly improved lubrication. ACS Appl. Mater. Interfaces. 4(12), 6683–6689 (2012)

    Article  CAS  Google Scholar 

  22. Song, Z., Cai, M., Liang, Y., Fan, M., Zhou, F., Liu, W.: In situ preparation of anti-corrosion ionic liquids as the lubricant additives in multiply-alkylated cyclopentanes. RSC Adv. 3(44), 21715–21721 (2013)

    Article  CAS  Google Scholar 

  23. Wu, X., Liu, J., Zhao, Q., Zhang, M., Zhao, G., Wang, X.: In Situ Formed Ionic Liquids in Polyol Esters as High Performance Lubricants for Steel/Steel Contacts at 300°C. ACS Sustain. Chem. Eng. 3(9), 2281–2290 (2015)

    Article  CAS  Google Scholar 

  24. Wu, X., Zhao, G., Wang, X., Liu, W.: Preparation of High-Temperature Lubricants by Blending Castor Oil with Lithium Bis(trifluoromethylsulfonyl)imide. Tribol. Lett. 65(2), 51 (2017)

    Article  Google Scholar 

  25. Zhang, C.-C., Zhang, F.-S.: Recovery of triphenyl phosphate from waste printed circuit boards by solvothermal process. Chem. Eng. J. 240, 10–15 (2014)

    Article  CAS  Google Scholar 

  26. Cai, M., Liang, Y., Zhou, F., Liu, W.: Tribological properties of novel imidazolium ionic liquids bearing benzotriazole group as the antiwear/anticorrosion additive in poly(ethylene glycol) and polyurea grease for steel/steel contacts. ACS Appl. Mater. Interfaces. 3(12), 4580–4592 (2011)

    Article  CAS  Google Scholar 

  27. Naumkin, A.V., Kraut-Vass, A., Gaarenstroom, S.W., Powell, C.J.: NIST X-ray Photoelectron Spectroscopy Database. https://srdata.nist.gov/xps/Default.aspx

  28. Yao, M., Liang, Y., Xia, Y., Zhou, F.: Bisimidazolium ionic liquids as the high-performance antiwear additives in poly(ethylene glycol) for steel-steel contacts. ACS Appl. Mater. Interfaces. 1(2), 467–471 (2009)

    Article  CAS  Google Scholar 

  29. Gauthier, A., Montes, H., Georges, J.M.: Boundary lubrication with tricresylphosphate (TCP). Importance of corrosive wear. ASLE Trans. 25(4), 445–455 (2008)

    Article  Google Scholar 

  30. Lu, R., Kobayashi, K., Nanao, H., Mori, S.: Deactivation effect of tricresyl phosphate (TCP) on tribochemical decomposition of hydrocarbon oil on a nascent steel surface. Tribol. Lett. 33(1), 1–8 (2008)

    Article  CAS  Google Scholar 

  31. Johnson, D., Bachus, M., Hils, J.: Interaction between lubricants containing phosphate ester additives and stainless steels. Lubricants 1(2), 48–60 (2013)

    Article  Google Scholar 

  32. Guan, B., Pochopien, B.A., Wright, D.S.: The chemistry, mechanism and function of tricresyl phosphate (TCP) as an anti-wear lubricant additive. Lubr. Sci. 28(5), 257–265 (2016)

    Article  CAS  Google Scholar 

  33. Chao, T.S., Hutchison, D.A., Kjonaas, M.: Some synergistic antioxidants for synthetic lubricants. Ind. Eng. Chem. Prod. Res. Dev. 23(1), 21–27 (1984)

    Article  CAS  Google Scholar 

  34. Yao, J., Dong, J.: Antioxidation synergism between alkali metal salts and arylamine compounds in synthetic lubricants. Tribol. Trans. 39(2), 498–500 (1996)

    Article  CAS  Google Scholar 

  35. Yao, J.: Evaluation of sodium acetylacetonate as a synergist for arylamine antioxidants in synthetic lubricants. Tribol. Trans. 30(11), 795–799 (1997)

    Article  CAS  Google Scholar 

  36. Yao, J.: The role of sodium perfluorobutyrate in promoting the antioxidancy of dodpa in synthetic esters©. Tribol. Trans. 42(1), 84–89 (1999)

    Article  CAS  Google Scholar 

  37. Yao, J.: Evaluation of alkali metal salts as deposit inhibitors for synthetic lubricants by differential scanning calorimetry (DSC). Thermochim. Acta. 296(1–2), 105–110 (1997)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial supports from the National Key Research and Development Program of China (Grant No. 2018YFB0703802).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, R., Li, W., Zhao, Q. et al. In Situ Synthesized Phosphate-based Ionic Liquids as High-Performance Lubricant Additives. Tribol Lett 67, 60 (2019). https://doi.org/10.1007/s11249-019-1175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1175-6

Keywords

Navigation