Skip to main content
Log in

Atomic Friction: Anisotropy and Asymmetry Effects

Tribology Letters Aims and scope Submit manuscript

Abstract

The NaCl(001) surface was investigated by friction force microscopy in ultra-high vacuum conditions at room temperature. A homemade atomic force microscope was used which allows an in situ sample rotation. With this ability, it is not only possible to measure friction along arbitrary orientations of the NaCl crystal, but also the symmetry directions of the sample can be precisely tuned parallel to the scan orientation which is fixed orthogonal to the cantilever axis for a calibrated friction measurement. With such a perfect alignment, the tip moves over identical crystallographic positions along the whole scanned line of a couple of nanometers. A relative shift along the slow scan direction was observed between forward and backward scanned force maps. By reconstructing the tip path, we identified five distinguishable modes of tip motions, and found that the asymmetric friction loops are predominant. Prandtl-Tomlinson simulations based on a sinusoidal corrugation potential cannot reproduce the experimental observation. Instead a very good agreement is achieved using an ab initio calculated interaction potential. Measurements along arbitrary orientations show a monotonic decrease of the friction coefficient towards the [110] direction in agreement with the simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Binnig, G., Quate, C., Gerber, C.: Atomic Force Microscope. Phys. Rev. Lett. 56(9), 930 (1986)

    Article  CAS  Google Scholar 

  2. Pawlak, R., Kawai, S., Meier, T., Glatzel, T., Baratoff, A., Meyer, E.: Single-molecule manipulation experiments to explore friction and adhesion. J. Phys. D 50(11), 113003 (2017)

    Article  Google Scholar 

  3. Pawlak, R., Ouyang, W., Filippov, A.E., Kalikhman-Razvozov, L., Kawai, S., Glatzel, T., Gnecco, E., Baratoff, A., Zheng, Q., Hod, O., Urbakh, M., Meyer, E.: Single-molecule tribology: force microscopy manipulation of a porphyrin derivative on a copper surface. ACS Nano 10(1), 713 (2016)

    Article  CAS  Google Scholar 

  4. Kawai, S., Glatzel, T., Koch, S., Such, B., Baratoff, A., Meyer, E.: Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. Phys. Rev. Lett. 103(22), 220801 (2009)

    Article  Google Scholar 

  5. Sugimoto, Y., Abe, M., Hirayama, S., Oyabu, N., Custance, O., Morita, S.: Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4(2), 156 (2005)

    Article  CAS  Google Scholar 

  6. Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)

    Article  CAS  Google Scholar 

  7. Trillitzsch, F., Guerra, R., Janas, A., Manini, N., Krok, F., Gnecco, E.: Directional and angular locking in the driven motion of Au islands on \({\rm MoS}_{2}\). Phys. Rev. B 98, 165417 (2018)

    Article  CAS  Google Scholar 

  8. Dienwiebel, M., Pradeep, N., Verhoeven, G.S., Zandbergen, H.W., Frenken, J.W.M.: Model experiments of superlubricity of graphite. Surf. Sci. 576, 197 (2005)

    Article  CAS  Google Scholar 

  9. Namai, Y., Shindo, H.: Frictional force microscopic anisotropy on (001) surfaces of alkali halides and MgO. Jpn. J. Appl. Phys. 39, 4497 (2000)

    Article  CAS  Google Scholar 

  10. Balakrishna, S.G., de Wijn, A.S., Bennewitz, R.: Preferential sliding directions on graphite. Phys. Rev. B 89, 245440 (2014)

    Article  Google Scholar 

  11. Almeida, C.M., Prioli, R., Fragneaud, B., Cançado, L.G., Paupitz, R., Galvão, D.S., De Cicco, M., Menezes, M.G., Achete, C.A., Capaz, R.B.: Giant and tunable anisotropy of nanoscale friction in graphene. Sci. Rep. 6, 31569 (2016)

    Article  CAS  Google Scholar 

  12. Liley, M., Gourdon, D., Stamou, D., Meseth, U., Fischer, T.M., Lautz, C., Stahlberg, H., Vogel, H., Burnham, N.A., Duschl, C.: Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280, 273 (1998)

    Article  CAS  Google Scholar 

  13. Carpick, R.W., Sasaki, D.Y., Burns, A.R.: Large friction anisotropy of a polydiacetylene monolayer. Tribol. Lett. 7, 79 (1999)

    Article  CAS  Google Scholar 

  14. Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J., Thiel, P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354 (2005)

    Article  CAS  Google Scholar 

  15. Campione, M., Trabattoni, S., Moret, M.: Nanoscale mapping of frictional anisotropy. Tribol. Lett. 45, 219 (2012)

    Article  Google Scholar 

  16. Fessler, G., Zimmermann, I., Glatzel, T., Gnecco, E., Steiner, P., Roth, R., Keene, T.D., Liu, S.X., Decurtins, S., Meyer, E.: Orientation dependent molecular friction on organic layer compound crystals. Appl. Phys. Lett. 98(8), 083119 (2011)

    Article  Google Scholar 

  17. Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Maier, S., Glatzel, T., Meyer, E.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79(4), 045414 (2009)

    Article  Google Scholar 

  18. Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Meyer, E.: Angular dependence of static and kinetic friction on alkali halide surfaces. Phys. Rev. B 82(20), 205417 (2010)

    Article  Google Scholar 

  19. Howald, L., Meyer, E., Lüthi, R., Haefke, H., Overney, R., Rudin, H., Güntherodt, H.J.: Multifunctional probe microscope for facile operation in ultrahigh vacuum. Appl. Phys. Lett. 63(1), 117 (1993)

    Article  CAS  Google Scholar 

  20. Meyer, E., Gyalog, T., Overney, R.M., Dransfeld, K.: Nanoscience: friction and rheology on the nanometer scale. WORLD SCIENTIFIC, Singapore (1998)

    Book  Google Scholar 

  21. Nonnenmacher, M., Greschner, J., Wolter, O., Kassing, R.: Scanning force microscopy with micromachined silicon sensors. J. Vac. Sci. Technol. B 9, 1358 (1991)

    Article  CAS  Google Scholar 

  22. Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. B 87, 174301 (2001)

    CAS  Google Scholar 

  23. Reimann, P., Evstigneev, M.: Description of atomic friction as forced Brownian motion. N. J. Phys. 7, 25 (2005)

    Article  Google Scholar 

  24. Schirmeisen, A., Weiner, D., Fuchs, H.: Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. Phys. Rev. Lett. 97(13), 136101 (2006)

    Article  Google Scholar 

  25. Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A., Caliste, D., Zilberberg, O., Rayson, M., Bergman, A., et al.: Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys. 129, 014109 (2008)

    Article  Google Scholar 

  26. Hartwigsen, C., Gœdecker, S., Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58(7), 3641 (1998)

    Article  CAS  Google Scholar 

  27. Ghasemi, S.A.: Atomistic simulations of atomic force microscopy. Ph.D. thesis, University of Basel (2010)

  28. Goedecker, S.: Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120(21), 9911 (2004)

    Article  CAS  Google Scholar 

  29. Ghasemi, S.A., Goedecker, S., Baratoff, A., Lenosky, T., Meyer, E., Hug, H.J.: Ubiquitous mechanisms of energy dissipation in noncontact atomic force microscopy. Phys. Rev. Lett. 100(23), 236106 (2008)

    Article  Google Scholar 

  30. Pou, P., Ghasemi, S., Jelinek, P., Lenosky, T., Goedecker, S., Perez, R.: Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20(26), 264015 (2009)

    Article  CAS  Google Scholar 

  31. Sadeghi, A., Baratoff, A., Ghasemi, S.A., Goedecker, S., Glatzel, T., Kawai, S., Meyer, E.: Multiscale approach for simulations of Kelvin probe force microscopy with atomic resolution. Phys. Rev. B 86(7), 075407 (2012)

    Article  Google Scholar 

  32. Weymouth, A.J., Meuer, D., Mutombo, P., Wutscher, T., Ondracek, M., Jelinek, P., Giessibl, F.J.: Atomic structure affects the directional dependence of friction. Phys. Rev. Lett. 111(12), 126103 (2013)

    Article  CAS  Google Scholar 

  33. Gnecco, E., Fajardo, O.Y., Pina, C.M., Mazo, J.J.: Anisotropy effects in atomic-scale friction. Tribol. Lett. 48(1), 33 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Swiss National Foundation (SNF), the Swiss Nanoscience Institute (SNI), and the SINERGIA Project CRSII2 136287\(\backslash\)1 for their financial support. Computing time was provided by the CSCS under Project Number s707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thilo Glatzel.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fessler, G., Sadeghi, A., Glatzel, T. et al. Atomic Friction: Anisotropy and Asymmetry Effects. Tribol Lett 67, 59 (2019). https://doi.org/10.1007/s11249-019-1172-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1172-9

Keywords

Navigation