Tribology Letters

, 67:59 | Cite as

Atomic Friction: Anisotropy and Asymmetry Effects

  • Gregor Fessler
  • Ali Sadeghi
  • Thilo GlatzelEmail author
  • Stefan Goedecker
  • Ernst Meyer
Original Paper


The NaCl(001) surface was investigated by friction force microscopy in ultra-high vacuum conditions at room temperature. A homemade atomic force microscope was used which allows an in situ sample rotation. With this ability, it is not only possible to measure friction along arbitrary orientations of the NaCl crystal, but also the symmetry directions of the sample can be precisely tuned parallel to the scan orientation which is fixed orthogonal to the cantilever axis for a calibrated friction measurement. With such a perfect alignment, the tip moves over identical crystallographic positions along the whole scanned line of a couple of nanometers. A relative shift along the slow scan direction was observed between forward and backward scanned force maps. By reconstructing the tip path, we identified five distinguishable modes of tip motions, and found that the asymmetric friction loops are predominant. Prandtl-Tomlinson simulations based on a sinusoidal corrugation potential cannot reproduce the experimental observation. Instead a very good agreement is achieved using an ab initio calculated interaction potential. Measurements along arbitrary orientations show a monotonic decrease of the friction coefficient towards the [110] direction in agreement with the simulation results.


Nanotribology Friction anisotropy Tomlinson model DFT Atomic stick slip 



The authors would like to thank the Swiss National Foundation (SNF), the Swiss Nanoscience Institute (SNI), and the SINERGIA Project CRSII2 136287\(\backslash\)1 for their financial support. Computing time was provided by the CSCS under Project Number s707.


  1. 1.
    Binnig, G., Quate, C., Gerber, C.: Atomic Force Microscope. Phys. Rev. Lett. 56(9), 930 (1986)CrossRefGoogle Scholar
  2. 2.
    Pawlak, R., Kawai, S., Meier, T., Glatzel, T., Baratoff, A., Meyer, E.: Single-molecule manipulation experiments to explore friction and adhesion. J. Phys. D 50(11), 113003 (2017)CrossRefGoogle Scholar
  3. 3.
    Pawlak, R., Ouyang, W., Filippov, A.E., Kalikhman-Razvozov, L., Kawai, S., Glatzel, T., Gnecco, E., Baratoff, A., Zheng, Q., Hod, O., Urbakh, M., Meyer, E.: Single-molecule tribology: force microscopy manipulation of a porphyrin derivative on a copper surface. ACS Nano 10(1), 713 (2016)CrossRefGoogle Scholar
  4. 4.
    Kawai, S., Glatzel, T., Koch, S., Such, B., Baratoff, A., Meyer, E.: Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy. Phys. Rev. Lett. 103(22), 220801 (2009)CrossRefGoogle Scholar
  5. 5.
    Sugimoto, Y., Abe, M., Hirayama, S., Oyabu, N., Custance, O., Morita, S.: Atom inlays performed at room temperature using atomic force microscopy. Nat. Mater. 4(2), 156 (2005)CrossRefGoogle Scholar
  6. 6.
    Tomlinson, G.A.: A molecular theory of friction. Philos. Mag. 7, 905 (1929)CrossRefGoogle Scholar
  7. 7.
    Trillitzsch, F., Guerra, R., Janas, A., Manini, N., Krok, F., Gnecco, E.: Directional and angular locking in the driven motion of Au islands on \({\rm MoS}_{2}\). Phys. Rev. B 98, 165417 (2018)CrossRefGoogle Scholar
  8. 8.
    Dienwiebel, M., Pradeep, N., Verhoeven, G.S., Zandbergen, H.W., Frenken, J.W.M.: Model experiments of superlubricity of graphite. Surf. Sci. 576, 197 (2005)CrossRefGoogle Scholar
  9. 9.
    Namai, Y., Shindo, H.: Frictional force microscopic anisotropy on (001) surfaces of alkali halides and MgO. Jpn. J. Appl. Phys. 39, 4497 (2000)CrossRefGoogle Scholar
  10. 10.
    Balakrishna, S.G., de Wijn, A.S., Bennewitz, R.: Preferential sliding directions on graphite. Phys. Rev. B 89, 245440 (2014)CrossRefGoogle Scholar
  11. 11.
    Almeida, C.M., Prioli, R., Fragneaud, B., Cançado, L.G., Paupitz, R., Galvão, D.S., De Cicco, M., Menezes, M.G., Achete, C.A., Capaz, R.B.: Giant and tunable anisotropy of nanoscale friction in graphene. Sci. Rep. 6, 31569 (2016)CrossRefGoogle Scholar
  12. 12.
    Liley, M., Gourdon, D., Stamou, D., Meseth, U., Fischer, T.M., Lautz, C., Stahlberg, H., Vogel, H., Burnham, N.A., Duschl, C.: Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280, 273 (1998)CrossRefGoogle Scholar
  13. 13.
    Carpick, R.W., Sasaki, D.Y., Burns, A.R.: Large friction anisotropy of a polydiacetylene monolayer. Tribol. Lett. 7, 79 (1999)CrossRefGoogle Scholar
  14. 14.
    Park, J.Y., Ogletree, D.F., Salmeron, M., Ribeiro, R.A., Canfield, P.C., Jenks, C.J., Thiel, P.A.: High frictional anisotropy of periodic and aperiodic directions on a quasicrystal surface. Science 309, 1354 (2005)CrossRefGoogle Scholar
  15. 15.
    Campione, M., Trabattoni, S., Moret, M.: Nanoscale mapping of frictional anisotropy. Tribol. Lett. 45, 219 (2012)CrossRefGoogle Scholar
  16. 16.
    Fessler, G., Zimmermann, I., Glatzel, T., Gnecco, E., Steiner, P., Roth, R., Keene, T.D., Liu, S.X., Decurtins, S., Meyer, E.: Orientation dependent molecular friction on organic layer compound crystals. Appl. Phys. Lett. 98(8), 083119 (2011)CrossRefGoogle Scholar
  17. 17.
    Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Maier, S., Glatzel, T., Meyer, E.: Two-dimensional simulation of superlubricity on NaCl and highly oriented pyrolytic graphite. Phys. Rev. B 79(4), 045414 (2009)CrossRefGoogle Scholar
  18. 18.
    Steiner, P., Roth, R., Gnecco, E., Baratoff, A., Meyer, E.: Angular dependence of static and kinetic friction on alkali halide surfaces. Phys. Rev. B 82(20), 205417 (2010)CrossRefGoogle Scholar
  19. 19.
    Howald, L., Meyer, E., Lüthi, R., Haefke, H., Overney, R., Rudin, H., Güntherodt, H.J.: Multifunctional probe microscope for facile operation in ultrahigh vacuum. Appl. Phys. Lett. 63(1), 117 (1993)CrossRefGoogle Scholar
  20. 20.
    Meyer, E., Gyalog, T., Overney, R.M., Dransfeld, K.: Nanoscience: friction and rheology on the nanometer scale. WORLD SCIENTIFIC, Singapore (1998)CrossRefGoogle Scholar
  21. 21.
    Nonnenmacher, M., Greschner, J., Wolter, O., Kassing, R.: Scanning force microscopy with micromachined silicon sensors. J. Vac. Sci. Technol. B 9, 1358 (1991)CrossRefGoogle Scholar
  22. 22.
    Sang, Y., Dubé, M., Grant, M.: Thermal effects on atomic friction. Phys. Rev. B 87, 174301 (2001)Google Scholar
  23. 23.
    Reimann, P., Evstigneev, M.: Description of atomic friction as forced Brownian motion. N. J. Phys. 7, 25 (2005)CrossRefGoogle Scholar
  24. 24.
    Schirmeisen, A., Weiner, D., Fuchs, H.: Single-atom contact mechanics: from atomic scale energy barrier to mechanical relaxation hysteresis. Phys. Rev. Lett. 97(13), 136101 (2006)CrossRefGoogle Scholar
  25. 25.
    Genovese, L., Neelov, A., Goedecker, S., Deutsch, T., Ghasemi, S.A., Willand, A., Caliste, D., Zilberberg, O., Rayson, M., Bergman, A., et al.: Daubechies wavelets as a basis set for density functional pseudopotential calculations. J. Chem. Phys. 129, 014109 (2008)CrossRefGoogle Scholar
  26. 26.
    Hartwigsen, C., Gœdecker, S., Hutter, J.: Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 58(7), 3641 (1998)CrossRefGoogle Scholar
  27. 27.
    Ghasemi, S.A.: Atomistic simulations of atomic force microscopy. Ph.D. thesis, University of Basel (2010)Google Scholar
  28. 28.
    Goedecker, S.: Minima hopping: an efficient search method for the global minimum of the potential energy surface of complex molecular systems. J. Chem. Phys. 120(21), 9911 (2004)CrossRefGoogle Scholar
  29. 29.
    Ghasemi, S.A., Goedecker, S., Baratoff, A., Lenosky, T., Meyer, E., Hug, H.J.: Ubiquitous mechanisms of energy dissipation in noncontact atomic force microscopy. Phys. Rev. Lett. 100(23), 236106 (2008)CrossRefGoogle Scholar
  30. 30.
    Pou, P., Ghasemi, S., Jelinek, P., Lenosky, T., Goedecker, S., Perez, R.: Structure and stability of semiconductor tip apexes for atomic force microscopy. Nanotechnology 20(26), 264015 (2009)CrossRefGoogle Scholar
  31. 31.
    Sadeghi, A., Baratoff, A., Ghasemi, S.A., Goedecker, S., Glatzel, T., Kawai, S., Meyer, E.: Multiscale approach for simulations of Kelvin probe force microscopy with atomic resolution. Phys. Rev. B 86(7), 075407 (2012)CrossRefGoogle Scholar
  32. 32.
    Weymouth, A.J., Meuer, D., Mutombo, P., Wutscher, T., Ondracek, M., Jelinek, P., Giessibl, F.J.: Atomic structure affects the directional dependence of friction. Phys. Rev. Lett. 111(12), 126103 (2013)CrossRefGoogle Scholar
  33. 33.
    Gnecco, E., Fajardo, O.Y., Pina, C.M., Mazo, J.J.: Anisotropy effects in atomic-scale friction. Tribol. Lett. 48(1), 33 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsBaselSwitzerland
  2. 2.Glas Trösch AG SilverstarBützbergSwitzerland
  3. 3.Department of PhysicsShahid Beheshti University TehranIran

Personalised recommendations