Relaxation Tribometry: A Generic Method to Identify the Nature of Contact Forces

Abstract

Recent years have witnessed the development of so-called relaxation tribometers, the free oscillation of which is altered by the presence of frictional stresses within the contact. So far, analysis of such oscillations has been restricted to the shape of their decaying envelope, to identify in particular solid or viscous friction components. Here, we present a more general expression of the forces possibly acting within the contact, and retain six possible, physically relevant terms. Two of them, which had never been proposed in the context of relaxation tribometry, only affect the oscillation frequency, not the amplitude of the signal. We demonstrate that each of those six terms has a unique signature in the time-evolution of the oscillation, which allows efficient identification of their respective weights in any experimental signal. We illustrate our methodology on a PDMS sphere/glass plate torsional contact.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Rayleigh, J.W.S.: The theory of sound. Dover Publications, New-York (1945). first published in 1877

    Google Scholar 

  2. 2.

    Lorenz, H.: Lehrbuch der Technischen Physik. Erster Band: Technische Mechanik starrer Gebilde. Verlag von Julius Springer, Berlin (1924)

    Google Scholar 

  3. 3.

    Kimball, A.L.: Vibration damping, including the case of solid friction. J. Appl. Mech., Paper No. APM-51-21, 227–236 (1929)

  4. 4.

    Markho, P.H.: On Free vibrations with combined viscous and Coulomb damping. J. Dyn. Syst.-T. ASME 102, 283–286 (1980)

    Article  Google Scholar 

  5. 5.

    Feeny, B.F., Liang, W.: A decrement method for the simultaneous estimation of Coulomb and viscous friction. J. Sound Vib. 195, 149–154 (1996)

    Article  Google Scholar 

  6. 6.

    Liang, J.W., Feeny, B.F.: Identifying Coulomb and viscous friction from free-vibration decrements. Nonlinear Dynam. 16, 337–347 (1998)

    Article  Google Scholar 

  7. 7.

    Wu, Z., Liu, H., Liu, L., Yuan, D.: Identification of nonlinear viscous damping and Coulomb friction from the free response data. J. Sound Vib. 304, 407–414 (2007)

    Article  Google Scholar 

  8. 8.

    Rigaud, E., Perret-Liaudet, J., Belin, M., Joly-Pottuz, L., Martin, J.-M.: An original dynamic tribotest to discriminate friction and viscous damping. Tribol. Int. 43, 320–329 (2010)

    Article  Google Scholar 

  9. 9.

    Majdoub, F., Belin, M., Martin, J.-M., Perret-Liaudet, J., Kano, M., Yoshida, K.: Exploring low friction of lubricated DLC coatings in no-wear conditions with a new relaxation tribometer. Tribol. Int. 65, 278–285 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    Majdoub, F., Martin, J.-M., Belin, M., Perret-Liaudet, J., Iovine, R.: Effect of Temperature on Lubricated Steel/Steel Systems With or Without Fatty Acids Additives Using an Oscillating Dynamic Tribometer. Tribol. Lett. 54, 171–181 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    Belin, M., Arafune, H., Kamijo, T., Perret-Liaudet, J., Morinaga, T., Honma, S., Sato, T.: Low friction, lubricity, and durability of polymer brush coatings, characterized using the relaxation tribometer technique. Lubricants 6, 52 (2018)

    Article  Google Scholar 

  12. 12.

    Majdoub, F., Perret-Liaudet, J., Belin, M., Martin, J.-M.: Decaying law for the free oscillating response with a pseudo-polynomial friction law: analysis of a superlow lubricated friction test. J. Sound Vib. 348, 263–281 (2015)

    Article  Google Scholar 

  13. 13.

    Vasko, A.A., Braun, O.M., Marchenko, O.A., Naumovets, A.G.: Magnetic levitation tribometer: a point-contact friction. Tribol. Lett. 66, 74 (2018)

    Article  Google Scholar 

  14. 14.

    Vakis, A.I., Yastrebov, V.A., Scheibert, J., Nicola, L., Dini, D., Minfray, C., Almqvist, A., Paggi, M., Lee, S., Limbert, G., Molinari, J.F., Anciaux, G., Aghababaei, R., Echeverri Restrepo, S., Papangelo, A., Cammarata, A., Nicolini, P., Putignano, C., Carbone, G., Stupkiewicz, S., Lengiewicz, J., Costagliola, G., Bosia, F., Guarino, R., Pugno, N.M., Müser, M.H., Ciavarella, M.: Modeling and simulation in tribology across scales: an overview. Tribol. Int. 125, 169–199 (2018)

    Article  Google Scholar 

  15. 15.

    Wu-Bavouzet, F., Cayer-Barrioz, J., Le Bot, A., Brochard-Wyart, F., Bugin, A.: Effect of surface pattern on the adhesive friction of elastomers. Phys. Rev. E 82, 031806 (2010)

    Article  Google Scholar 

  16. 16.

    Sahli, R., Pallares, G., Ducottet, C., Ben Ali, I.E., Al Akhrass, S., Guibert, M., Scheibert, J.: Evolution of real contact area under shear and the value of static friction of soft materials. Proc. Natl. Acad. Sci. USA 115, 471–476 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    Smerdova, O., Cayer-Barrioz, J., Le Bot, A., Sarbaev, B.: Analytical model and experimental validation of friction laws for composites under low loads. Tribol. Lett. 46, 263–272 (2012)

    Article  Google Scholar 

  18. 18.

    Chateauminois, A., Fretigny, C., Olanier, L.: Friction and shear fracture of an adhesive contact under torsion. Phys. Rev. E 81, 026106 (2010)

    Article  Google Scholar 

  19. 19.

    Prevost, A., Scheibert, J., Debrégeas, G.: Probing the micromechanics of a multi-contact interface at the onset of frictional sliding. Eur. Phys. J. E 36, 17 (2013)

    CAS  Article  Google Scholar 

  20. 20.

    Strogatz, S.H.: Nonlinear dynamics and chaos. Westview Press, Cambridge (1994)

    Google Scholar 

  21. 21.

    Nayfeh, A.H.: Perturbation methods. Wiley-VCH, Weinheim (2004)

    Google Scholar 

  22. 22.

    Hamdi, M., Belhaq, M.: Quasi-periodic oscillation envelopes and frequency locking in rapidly vibrated nonlinear systems with time delay. Nonlinear Dynam. 73, 1–15 (2013)

    Article  Google Scholar 

  23. 23.

    Mergel, J.C., Sahli, R., Scheibert, J., Sauer, R.A.: Continuum contact models for coupled adhesion and friction. J. Adhesion (2018). https://doi.org/10.1080/00218464.2018.1479258

    Article  Google Scholar 

  24. 24.

    Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1985)

    Google Scholar 

  25. 25.

    Scheibert, J., Prevost, A., Debrégeas, G., Katzav, E., Adda-Bedia, M.: Stress field at a sliding frictional contact: Experiments and calculations. J. Mech. Phys. Solids 57, 1921–1933 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    Yashima, S., Romero, V., Wandersman, E., Frétigny, C., Chaudhury, M.K., Chateauminois, A., Prevost, A.M.: Normal contact and friction of rubber with model randomly rough surfaces. Soft Matter 11, 871–881 (2015)

    CAS  Article  Google Scholar 

  27. 27.

    Ruina, A.: Slip instability and state variable friction laws. J. Geophys. Res. 88, 10359–10370 (1983)

    Article  Google Scholar 

  28. 28.

    Baumberger, T., Caroli, C.: Solid friction from stick-slip down to pinning and aging. Adv. Phys. 55, 279–348 (2006)

    Article  Google Scholar 

  29. 29.

    Bar Sinai, Y., Brener, E.A., Bouchbinder, E.: Slow rupture of frictional interfaces. Geophys. Res. Lett. 39, L03308 (2012)

    Article  Google Scholar 

  30. 30.

    Trømborg, J.K., Sveinsson, H.A., Scheibert, J., Thøgersen, K., Amundsen, D.S., Malthe-Sørenssen, A.: Slow slip and the transition from fast to slow fronts in the rupture of frictional interfaces. Proc. Natl. Acad. Sci. USA 111, 8764–8769 (2014)

    Article  Google Scholar 

  31. 31.

    Thøgersen, K., Trømborg, J.K., Sveinsson, H.A., Malthe-Sørenssen, A., Scheibert, J.: History-dependent friction and slow slip from time-dependent microscopic junction laws studied in a statistical framework. Phys. Rev. E 89, 052401 (2014)

    Article  Google Scholar 

  32. 32.

    Hatano, T.: Friction laws from dimensional-analysis point of view. Geophys. J. Int. 202, 2159–2162 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

We thank J. Perret-Liaudet, E. Rigaud, and O.A. Marchenko for fruitful discussions and critical comments. This work was supported by CNRS-Ukraine PICS Grant No. 7422.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alain Le Bot.

Appendix: Two-Times Averaging Method

Appendix: Two-Times Averaging Method

The right-hand side of Eq. (1) is written \(f=\epsilon h(\theta ,\theta ')\) where \(\epsilon<<1\) and \(\theta '={\dot{\theta }}/\omega _0\) denotes the derivative of \(\theta\) with respect to dimensionless time. We seek the solution of the form \(\theta =a \cos \varphi\), where \(\varphi = \omega _0 t + \phi\) and a(t) and \(\phi (t)\) are slowly varying functions. Substituting in Eq. (1) gives:

$$\begin{aligned}&{\ddot{a}} \cos \varphi - 2\dot{a} (\omega _0 + {\dot{\phi }})\sin \varphi - a{\ddot{\phi }} \sin \varphi - 2a{\dot{\phi }} \omega _0\cos \varphi \nonumber \\&\quad - a {\dot{\phi }}^2\cos \varphi = -\epsilon \omega _0^2 h. \end{aligned}$$
(15)

Considering that \({\ddot{a}}\), \(\dot{a} {\dot{\phi }}\), \({\ddot{\phi }}\), and \({\dot{\phi }}^2\) are second order terms in \(\epsilon\) and can thus be neglected in Eq. (15):

$$\begin{aligned} 2\dot{a} \omega _0 \sin \varphi + 2a {\dot{\phi }} \omega _0 \cos \varphi = \epsilon \omega _0^2 h. \end{aligned}$$
(16)

We must now develop h at order zero in \(\epsilon\) since the left-hand side if of order one in \(\epsilon\). At order 0, \(\theta = a\cos \varphi\) and \({\dot{\theta }}/\omega _0 = -a\sin \varphi\) therefore \(h=h(a\cos \varphi ,-a\sin \varphi )\). Then substituting in Eq. (16) and averaging over a time-period (with \(\dot{a}\) and \({\dot{\phi }}\) constant) gives the so-called averaged equations:

$$\begin{aligned} \dot{a}= & {} \frac{\epsilon \omega _0}{2\pi } \int _0^{2\pi } h(a\cos \varphi ,-a\sin \varphi )\sin \varphi \,\mathrm {d}\varphi \nonumber \\= & {} \omega _0 \epsilon \langle h(\varphi ) \sin \varphi \rangle \end{aligned}$$
(17)
$$\begin{aligned} a{\dot{\phi }}= & {} \frac{\epsilon \omega _0}{2\pi } \int _0^{2\pi } h(a\cos \varphi ,-a\sin \varphi )\cos \varphi \,\mathrm {d}\varphi \nonumber \\= & {} \omega _0 \epsilon \langle h(\varphi ) \cos \varphi \rangle \end{aligned}$$
(18)

where \(\langle \cdot \rangle\) denotes mean value over \(2\pi\). These are two first-order ordinary differential equations on a and \(\phi\).

For instance, consider the case of a quadratic dissipative force \(f=\epsilon {\dot{\theta }}^2\mathrm {sgn}({\dot{\theta }})/\omega _0^2\). Then \(h(\theta ,\theta ')= \theta '^2\mathrm {sgn}(\theta ')\) and \(h(\varphi ) = -a^2 \cos ^2 \varphi \mathrm {sgn}(\sin \varphi )\). By averaging:

$$\begin{aligned} \langle h \sin \varphi \rangle= & {} -\frac{4a^2}{3\pi }, \end{aligned}$$
(19)
$$\begin{aligned} \langle h \cos \varphi \rangle= & {} 0. \end{aligned}$$
(20)

The two differential equations are therefore \(\dot{a} = -\,4a^2 \epsilon \omega _0 / 3\pi\) and \({\dot{\phi }} = 0\). After integration, \(a(t) = \left[ a_0^{-1}+4\epsilon \omega _0 t / 3\pi \right] ^{-1}\) (Eq. 7) and \(\phi (t) = \phi _0\), \(a_0\) and \(\phi _0\) being the initial values of a and \(\phi\).

A second interesting example is \(f=\epsilon \theta ^2\mathrm {sgn}({\dot{\theta }})\) for which \(h(\theta ,\theta ')=\theta ^2\mathrm {sgn}(\theta ')\) and \(h(\varphi ) = -a^2 \cos ^2 \varphi \mathrm {sgn}(\sin \varphi )\). By averaging:

$$\begin{aligned} \langle h \sin \varphi \rangle= & {} -\frac{2a^2}{3\pi }, \end{aligned}$$
(21)
$$\begin{aligned} \langle h \cos \varphi \rangle= & {} 0, \end{aligned}$$
(22)

which gives the same signature \(\dot{a} \propto a^2\) as in Eq. (19).

Similar results for all considered contact forces are summarized in Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Le Bot, A., Scheibert, J., Vasko, A.A. et al. Relaxation Tribometry: A Generic Method to Identify the Nature of Contact Forces. Tribol Lett 67, 53 (2019). https://doi.org/10.1007/s11249-019-1168-5

Download citation

Keywords

  • Relaxation tribometer
  • Damped oscillations
  • Amplitude decay curve
  • Frequency shift
  • Nonlinear contact forces
  • Two-times averaging method