Synergistic Effects Between the Two Choline-Based Ionic Liquids as Lubricant Additives in Glycerol Aqueous Solution

Abstract

Two choline-based ionic liquids (ILs) were used as lubricant additives in the aqueous glycerol solution, and the tribological properties of their different combinations were investigated. They exhibit remarkable synergistic effects on the antiwear and friction-reducing abilities. The combinations of both ILs more significantly improve the lubricity of the glycerol solution compared with the independent additives. In addition, the tribological behavior of the optimal combination was explored under different temperature and load conditions. The lubricating property of the optimal additive formulation is weakened with the increase of temperature, but enhanced with the increase of load. The worn surfaces were analyzed using SEM-EDAX and XPS. Meanwhile, Monte Carlo simulations were performed to study the adsorption behavior of the additives on iron surface in the presence of water. Remarkable synergistic lubricating interactions between the ILs are ascribed to the formation of compact and stable boundary films composed of mixed adsorbed layers and complex tribofilms.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    Chu, S., Majumdar, A.: Opportunities and challenges for a sustainable energy future. Nature 488(7411), 294–303 (2012)

    CAS  Article  Google Scholar 

  2. 2.

    Miller, M.K., Khalid, H., Michael, P.W., Guevremont, J.M., Garelick, K.J., Pollard, G.W., Whitworth, A.J., Devlin, M.T.: An investigation of hydraulic motor efficiency and tribological surface properties. Tribol. Trans. 57(4), 622–630 (2014)

    CAS  Article  Google Scholar 

  3. 3.

    Wang, Y.R., Yu, Q.L., Ma, Z.F., Huang, G.W., Cai, M.R., Zhou, F., Liu, W.M.: Significant enhancement of anti-friction capability of cationic surfactant by phosphonate functionality as additive in water. Tribol. Int. 112, 86–93 (2017)

    CAS  Article  Google Scholar 

  4. 4.

    Elomaa, O., Singh, V.K., Iyer, A., Hakala, T.J., Koskinen, J.: Graphene oxide in water lubrication on diamond-like carbon vs. stainless steel high-load contacts. Diam. Relat. Mat. 52, 43–48 (2015)

    CAS  Article  Google Scholar 

  5. 5.

    Tortora, A.M., Veeregowda, D.H.: Effects of two sliding motions on the superlubricity and wear of self-mated bearing steel lubricated by aqueous glycerol with and without nanodiamonds. Wear 386–387, 173–178 (2017)

    Article  CAS  Google Scholar 

  6. 6.

    Wang, Y.R., Yu, Q.L., Cai, M.R., Shi, L., Zhou, F., Liu, W.M.: Synergy of lithium salt and non-ionic surfactant for significantly improved tribological properties of water-based fluids. Tribol. Int. 113, 58–64 (2017)

    CAS  Article  Google Scholar 

  7. 7.

    Alias, A.A., Kinoshita, H., Fujii, M.: Tribological properties of diamond nanoparticle additive in water under a lubrication between steel plate and tungsten carbide ball. J. Adv. Mech. Des. Syst. Manuf. 9(1), 9 (2015)

    Article  Google Scholar 

  8. 8.

    Ssempebwa, J.C., Carpenter, D.O.: The generation, use and disposal of waste crankcase oil in developing countries: a case for Kampala district. Uganda. J. Hazard. Mater. 161(2–3), 835–841 (2009)

    CAS  Article  Google Scholar 

  9. 9.

    Espinosa, T., Jimenez, M., Sanes, J., Jimenez, A.E., Iglesias, M., Bermudez, M.D.: Ultra-low friction with a protic ionic liquid boundary film at the water-lubricated sapphire-stainless steel interface. Tribol. Lett. 53(1), 1–9 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    Tomala, A., Karpinska, A., Werner, W.S.M., Olver, A., Stori, H.: Tribological properties of additives for water-based lubricants. Wear 269(11–12), 804–810 (2010)

    CAS  Article  Google Scholar 

  11. 11.

    Wang, J.M., Wang, J.H., Li, C.S., Zhao, G.Q., Wang, X.B.: Tribological performance of poly(sodium 4-styrenesulphonate) as additive in water-glycol hydraulic fluid. Lubr. Sci. 24(3), 140–151 (2012)

    Article  CAS  Google Scholar 

  12. 12.

    Kinoshita, H., Nishina, Y., Alias, A.A., Fujii, M.: Tribological properties of monolayer graphene oxide sheets as water-based lubricant additives. Carbon 66, 720–723 (2014)

    CAS  Article  Google Scholar 

  13. 13.

    Shi, Y.J., Minami, I., Grahn, M., Bjorling, M., Larsson, R.: Boundary and elastohydrodynamic lubrication studies of glycerol aqueous solutions as green lubricants. Tribol. Int. 69, 39–45 (2014)

    CAS  Article  Google Scholar 

  14. 14.

    Ripoll, M.R., Totolin, V., Bedolla, P.O., Minami, I.: Methionine as a friction modifier for tungsten carbide-functionalized surfaces via in situ tribo-chemical reactions. ACS Sustain. Chem. Eng. 5(8), 7030–7039 (2017)

    Article  CAS  Google Scholar 

  15. 15.

    Gonzalez, J.A.T., Longinotti, M.P., Corti, H.R.: The viscosity of glycerol-water mixtures including the supercooled region. J. Chem. Eng. Data 56(4), 1397–1406 (2011)

    Article  CAS  Google Scholar 

  16. 16.

    Wichmann, H., Stache, H., Schmidt, C., Winter, M., Bock, R., Herrmann, C., Bahadir, M.: Ecological and economic evaluation of a novel glycerol based biocide-free metalworking fluid. J. Clean Prod. 43, 12–19 (2013)

    CAS  Article  Google Scholar 

  17. 17.

    Le, V.N.A., Lin, J.W.: Tribological properties of aluminum nanoparticles as additives in an aqueous glycerol solution. Appl. Sci.-Basel 7(1), 15 (2017)

    Google Scholar 

  18. 18.

    Zhang, C.L., Zhang, S.M., Yu, L.G., Zhang, Z.J., Wu, Z.S., Zhang, P.Y.: Preparation and tribological properties of water-soluble copper/silica nanocomposite as a water-based lubricant additive. Appl. Surf. Sci. 259, 824–830 (2012)

    CAS  Article  Google Scholar 

  19. 19.

    Ye, C.F., Liu, W.M., Chen, Y.X., Yu, L.G.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Commun.(21), 2244–2245 (2001)

  20. 20.

    Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9(4), 3209–3222 (2017)

    CAS  Article  Google Scholar 

  21. 21.

    Pejakovic, V., Tomastik, C., Dorr, N., Kalin, M.: Influence of concentration and anion alkyl chain length on tribological properties of imidazolium sulfate ionic liquids as additives to glycerol in steel-steel contact lubrication. Tribol. Int. 97, 234–243 (2016)

    CAS  Article  Google Scholar 

  22. 22.

    Jimenez, A.E., Bermudez, M.D.: Imidazolium ionic liquids as additives of the synthetic ester propylene glycol dioleate in aluminium-steel lubrication. Wear 265(5–6), 787–798 (2008)

    CAS  Article  Google Scholar 

  23. 23.

    Zhou, F., Liang, Y.M., Liu, W.M.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38(9), 2590–2599 (2009)

    CAS  Article  Google Scholar 

  24. 24.

    Minami, I.: Ionic liquids in tribology. Molecules 14(6), 2286–2305 (2009)

    CAS  Article  Google Scholar 

  25. 25.

    Battez, A.H., Gonzalez, R., Viesca, J.L., Blanco, D., Asedegbega, E., Osorio, A.: Tribological behaviour of two imidazolium ionic liquids as lubricant additives for steel/steel contacts. Wear 266(11–12), 1224–1228 (2009)

    CAS  Article  Google Scholar 

  26. 26.

    Kamimura, H., Kubo, T., Minami, I., Mori, S.: Effect and mechanism of additives for ionic liquids as new lubricants. Tribol. Int. 40(4), 620–625 (2007)

    CAS  Article  Google Scholar 

  27. 27.

    Yang, X.Y., Meng, Y.G., Tian, Y.: Effect of imidazolium ionic liquid additives on lubrication performance of propylene carbonate under different electrical potentials. Tribol. Lett. 56(1), 161–169 (2014)

    CAS  Article  Google Scholar 

  28. 28.

    Huang, G.W., Yu, Q.L., Cai, M.R., Zhou, F., Liu, W.M.: Investigation of the lubricity and antiwear behavior of guanidinium ionic liquids at high temperature. Tribol. Int. 114, 65–76 (2017)

    CAS  Article  Google Scholar 

  29. 29.

    Blanco, D., Gonzalez, R., Viesca, J.L., Fernandez-Gonzalez, A., Bartolome, M., Battez, A.H.: Antifriction and antiwear properties of an ionic liquid with fluorine-containing anion used as lubricant additive. Tribol. Lett. 65(2), 10 (2017)

    Article  CAS  Google Scholar 

  30. 30.

    Torimoto, T., Tsuda, T., Okazaki, K., Kuwabata, S.: New frontiers in materials science opened by ionic liquids. Adv. Mater. 22(11), 1196–1221 (2010)

    CAS  Article  Google Scholar 

  31. 31.

    Gusain, R., Khatri, O.P.: Halogen-free ionic liquids: effect of chelated orthoborate anion structure on their lubrication properties. RSC Adv. 5(32), 25287–25294 (2015)

    CAS  Article  Google Scholar 

  32. 32.

    Gusain, R., Khatri, O.P.: Fatty acid ionic liquids as environmentally friendly lubricants for low friction and wear. RSC Adv. 6(5), 3462–3469 (2016)

    CAS  Article  Google Scholar 

  33. 33.

    Gusain, R., Dhingra, S., Khatri, O.P.: Fatty-acid-constituted halogen-free ionic liquids as renewable, environmentally friendly, and high-performance lubricant additives. Ind. Eng. Chem. Res. 55(4), 856–865 (2016)

    CAS  Article  Google Scholar 

  34. 34.

    Dong, R., Wen, P., Zhang, S., Zhang, C.Y., Sun, W.J., Fan, M.J., Yang, D.S., Zhou, F., Liu, W.M.: The synthesis and tribological properties of dicarboxylic acid ionic liquids. Tribol. Int. 114, 132–140 (2017)

    CAS  Article  Google Scholar 

  35. 35.

    Shi, Y.J., Larsson, R.: Non-corrosive and biomaterials protic ionic liquids with high lubricating performance. Tribol. Lett. 63(1), 7 (2016)

    Article  CAS  Google Scholar 

  36. 36.

    Song, Z.H., Yu, Q.L., Cai, M.R., Huang, G.W., Yao, M.H., Li, D.M., Liang, Y.M., Fan, M.J., Zhou, F.: Green ionic liquid lubricants prepared from anti-inflammatory drug. Tribol. Lett. 60(3), 11 (2015)

    Article  CAS  Google Scholar 

  37. 37.

    Wang, Y.R., Yu, Q.L., Cai, M.R., Shi, L., Zhou, F., Liu, W.M.: Ibuprofen-based ionic liquids as additives for enhancing the lubricity and antiwear of water-ethylene glycol liquid. Tribol. Lett. 65(2), 13 (2017)

    Google Scholar 

  38. 38.

    Zheng, G.L., Zhang, G.Q., Ding, T.M., Xiang, X.Z., Li, F., Ren, T.H., Liu, S.H., Zheng, L.: Tribological properties and surface interaction of novel water-soluble ionic liquid in water-glycol. Tribol. Int. 116, 440–448 (2017)

    CAS  Article  Google Scholar 

  39. 39.

    Li, Y., Zhang, S.W., Ding, Q., Feng, D.P., Qin, B.F., Hu, L.T.: The corrosion and lubrication properties of 2-Mercaptobenzothiazole functionalized ionic liquids for bronze. Tribol. Int. 114, 121–131 (2017)

    CAS  Article  Google Scholar 

  40. 40.

    Mu, L.W., Shi, Y.J., Ji, T., Chen, L., Yuan, R.X., Wang, H.Y., Zhu, J.H.: Ionic grease lubricants: protic triethanolamine oleic acid and aprotic choline oleic acid. ACS Appl. Mater. Interfaces 8(7), 4977–4984 (2016)

    CAS  Article  Google Scholar 

  41. 41.

    Zhou, X.X., Lin, B., Yan, S., Wang, A.Y., Zhang, X.F., Ge, S.D.: Influence of temperature and concentration on tribological properties of silicon nitride in glycerol aqueous solution. Ceram. Int. 42(3), 3786–3796 (2016)

    CAS  Article  Google Scholar 

  42. 42.

    Guo, L., Zhu, S., Zhang, S., He, Q., Li, W.: Theoretical studies of three triazole derivatives as corrosion inhibitors for mild steel in acidic medium. Corros. Sci. 87, 366–375 (2014)

    CAS  Article  Google Scholar 

  43. 43.

    Sasikumar, Y., Adekunle, A.S., Olasunkanmi, L.O., Bahadur, I., Baskar, R., Kabanda, M.M., Obot, I.B., Ebenso, E.E.: Experimental, quantum chemical and Monte Carlo simulation studies on the corrosion inhibition of some alkyl imidazolium ionic liquids containing tetrafluoroborate anion on mild steel in acidic medium. J. Mol. Liq. 211, 105–118 (2015)

    CAS  Article  Google Scholar 

  44. 44.

    Moder, J., Grun, F., Summer, F., Gasperlmair, T., Andritschky, M.: Effect of temperature on wear and tribofilm formation in highly loaded DLC-steel line contacts. Tribol. Int. 123, 120–129 (2018)

    CAS  Article  Google Scholar 

  45. 45.

    Fan, M.J., Zhang, C.Y., Guo, Y.N., Zhang, R.R., Lin, L.B., Yang, D.S., Zhou, F., Liu, W.M.: An Investigation on the friction and wear properties of perfluorooctane sulfonate ionic liquids. Tribol. Lett. 63(1), 11 (2016)

    Article  CAS  Google Scholar 

  46. 46.

    Li, Z.P., Ren, T.H.: Synergistic effects between alkylphosphate-ammonium ionic liquid and alkylphenylborate as lubricant additives in rapeseed oil. Tribol. Int. 109, 373–381 (2017)

    CAS  Article  Google Scholar 

  47. 47.

    Nan, F., Xu, Y., Xu, B.S., Gao, F., Wu, Y.X., Tang, X.H.: Effect of natural attapulgite powders as lubrication additive on the friction and wear performance of a steel tribo-pair. Appl. Surf. Sci. 307, 86–91 (2014)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (NSFC 51475445 and 51775536).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 392 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Wang, X., Zhang, M. et al. Synergistic Effects Between the Two Choline-Based Ionic Liquids as Lubricant Additives in Glycerol Aqueous Solution. Tribol Lett 67, 47 (2019). https://doi.org/10.1007/s11249-019-1161-z

Download citation

Keywords

  • Choline
  • Ricinoleic acid
  • 2-Mercaptobenzothiazole (MBT)
  • Ionic liquids (ILs)
  • Monte Carlo simulations