Investigation of the Mechanics, Composition, and Functional Behavior of Thick Tribofilms Formed from Silicon- and Oxygen-Containing Hydrogenated Amorphous Carbon

Abstract

A custom-grown silicon and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) film is subjected to ball-on-flat tribometry under controlled sliding environments (ambient, dry air, and dry N2) at room temperature using a 52100 steel ball. The resulting friction coefficient is below 0.2 in ambient air and below 0.1 in dry N2. Tribofilms on the steel ball with thicknesses in excess of 500 nm are observed. The tribofilms are derived from the a-C:H:Si:O and grow on the steel ball, and display chemical and structural modifications relative to the original a-C:H:Si:O film. Sliding of the tribofilm-coated steel ball against bare silicon results in low friction, highlighting the inherent lubricity afforded by the tribofilm. Tribofilms grown through sliding against a-C:H:Si:O are characterized, post-sliding, with multiple spectroscopic and imaging techniques which collectively demonstrate that the composition and structure of the tribofilm is strongly dependent on the sliding environment. The unusually high tribofilm thickness allows for nanoindentation analysis, which demonstrates that the films are laterally heterogenous and softer than the original a-C:H:Si:O, with moduli and hardness values ranging over three orders of magnitude. Many regions of the tribofilms are extremely soft, with measured hardness values below 100 MPa and reduced Young’s moduli below 1 GPa, and also show a viscous mechanical response. Transmission electron microscopy and electron energy loss spectroscopy (TEM/EELS) characterization of the tribofilm demonstrates that the bulk structure is not graphitic, and indicates the tribofilms are enriched in C−H bonding. Additionally, there is a marked segregation within the tribofilm of Si/O and carbon. It is proposed that a primarily polymeric tribofilm structure can explain the observed mechanical properties.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Ferrari, A.C.: Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180–181, 190–206 (2004). https://doi.org/10.1016/j.surfcoat.2003.10.146

    CAS  Article  Google Scholar 

  2. 2.

    Hainsworth, S.V., Uhure, N.J.: Diamond like carbon coatings for tribology: production techniques, characterisation methods and applications. Int. Mater. Rev. 52, 153–174 (2007). https://doi.org/10.1179/174328007X160272

    CAS  Article  Google Scholar 

  3. 3.

    Donnet, C., Erdemir, A.: Tribology of diamond-like carbon films fundamentals and applications. Springer, New York (2008)

    Google Scholar 

  4. 4.

    Grischke, M., Bewilogua, K., Trojan, K., Dimigen, H.: Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings. Surf. Coat. Technol. 74, 739–745 (1995). https://doi.org/10.1016/0257-8972(94)08201-4

    Article  Google Scholar 

  5. 5.

    Visser, S.A., Hewitt, C.E., Fornalik, J., Braunstein, G., Srividya, C., Babu, S.V.: Compositions and surface energies of plasma-deposited multilayer fluorocarbon thin films. Surf. Coat. Technol. 96, 210–222 (1997). https://doi.org/10.1016/S0257-8972(97)00112-6

    Article  Google Scholar 

  6. 6.

    Allen, M., Myer, B., Rushton, N.: In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. J. Biomed. Mater. Res. 58, 319–328 (2001). https://doi.org/10.1002/1097-4636(2001)58:3%3C319::AID-JBM1024%3E3.0.CO;2-F

    CAS  Article  Google Scholar 

  7. 7.

    Koshigan, K.D., Mangolini, F., McClimon, J.B., Vacher, B., Bec, S., Carpick, R.W., Fontaine, J.: Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon. 93, 851–860 (2015). https://doi.org/10.1016/j.carbon.2015.06.004

    CAS  Article  Google Scholar 

  8. 8.

    Yang, W.J., Choa, Y.-H., Sekino, T., Shim, K.B., Niihara, K., Auh, K.H.: Thermal stability evaluation of diamond-like nanocomposite coatings. Thin Solid Films. 434, 49–54 (2003). https://doi.org/10.1016/S0040-6090(03)00466-8

    CAS  Article  Google Scholar 

  9. 9.

    Mangolini, F., McClimon, J.B., Segersten, J., Hilbert, J., Heaney, P., Lukes, J.R., Carpick, R.W.: Silicon oxide-rich diamond-like carbon: a conformal, ultrasmooth thin film material with high thermo-oxidative stability. Adv. Mater. Interfaces. 0, 1801416. https://doi.org/10.1002/admi.201801416

    Article  Google Scholar 

  10. 10.

    Mangolini, F., Rose, F., Hilbert, J., Carpick, R.W.: Thermally induced evolution of hydrogenated amorphous carbon. Appl. Phys. Lett. 103, 161605 (2013). https://doi.org/10.1063/1.4826100

    CAS  Article  Google Scholar 

  11. 11.

    Konicek, A.R.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, (2012). https://doi.org/10.1103/PhysRevB.85.155448

  12. 12.

    Donnet, C., Fontaine, J., Grill, A., Mogne, T.L.: The role of hydrogen on the friction mechanism of diamond-like carbon films. Tribol. Lett. 9, 137–142 (2001). https://doi.org/10.1023/A:1018800719806

    Article  Google Scholar 

  13. 13.

    Qi, Y., Konca, E., Alpas, A.T.: Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum—a first principles investigation. Surf. Sci. 600, 2955–2965 (2006). https://doi.org/10.1016/j.susc.2006.05.008

    CAS  Article  Google Scholar 

  14. 14.

    Cui, L., Lu, Z., Wang, L.: Probing the low-friction mechanism of diamond-like carbon by varying of sliding velocity and vacuum pressure. Carbon. 66, 259–266 (2014). https://doi.org/10.1016/j.carbon.2013.08.065

    CAS  Article  Google Scholar 

  15. 15.

    Romero, P.A., Pastewka, L., Lautz, J.V., Moseler, M.: Surface passivation and boundary lubrication of self-mated tetrahedral amorphous carbon asperities under extreme tribological conditions. Friction. 2, 193–208 (2014). https://doi.org/10.1007/s40544-014-0057-z

    CAS  Article  Google Scholar 

  16. 16.

    Wang, L., Cui, L., Lu, Z., Zhou, H.: Understanding the unusual friction behavior of hydrogen-free diamond-like carbon films in oxygen atmosphere by first-principles calculations. Carbon. 100, 556–563 (2016). https://doi.org/10.1016/j.carbon.2016.01.060

    CAS  Article  Google Scholar 

  17. 17.

    Kajita, S., Righi, M.C.: A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamics. Carbon. https://doi.org/10.1016/j.carbon.2016.02.078

    CAS  Article  Google Scholar 

  18. 18.

    Matta, C., Eryilmaz, O.L., Bouchet, M.I.D.B., Erdemir, A., Martin, J.M., Nakayama, K.: On the possible role of triboplasma in friction and wear of diamond-like carbon films in hydrogen-containing environments. J. Phys. Appl. Phys. 42, 075307 (2009). https://doi.org/10.1088/0022-3727/42/7/075307

    CAS  Article  Google Scholar 

  19. 19.

    Konicek, A.R.: Origin of Ultralow Friction and Wear in Ultrananocrystalline Diamond. Phys. Rev. Lett. 100, (2008). https://doi.org/10.1103/PhysRevLett.100.235502

  20. 20.

    Liu, Y., Erdemir, A., Meletis, E.I.: An investigation of the relationship between graphitization and frictional behavior of DLC coatings. Surf. Coat. Technol. 86, 564–568 (1996). https://doi.org/10.1016/S0257-8972(96)03057-5

    Article  Google Scholar 

  21. 21.

    Scharf, T.W., Ohlhausen, J.A., Tallant, D.R., Prasad, S.V.: Mechanisms of friction in diamondlike nanocomposite coatings. J. Appl. Phys. 101, 063521–063521 (2007). https://doi.org/10.1063/1.2711147

    CAS  Article  Google Scholar 

  22. 22.

    Ahn, H.-S., Chizhik, S.A., Dubravin, A.M., Kazachenko, V.P., Popov, V.V.: Application of phase contrast imaging atomic force microscopy to tribofilms on DLC coatings. Wear. 249, 617–625 (2001). https://doi.org/10.1016/S0043-1648(01)00694-9

    CAS  Article  Google Scholar 

  23. 23.

    Rabbani, F.: Phenomenological evidence for the wear-induced graphitization model of amorphous hydrogenated carbon coatings. Surf. Coat. Technol. 184, 194–207 (2004). https://doi.org/10.1016/j.surfcoat.2003.11.006

    CAS  Article  Google Scholar 

  24. 24.

    Kunze, T., Posselt, M., Gemming, S., Seifert, G., Konicek, A.R., Carpick, R.W., Pastewka, L., Moseler, M.: Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon. Tribol. Lett. 53, 119–126 (2014). https://doi.org/10.1007/s11249-013-0250-7

    CAS  Article  Google Scholar 

  25. 25.

    Chen, X., Zhang, C., Kato, T., Yang, X., Wu, S., Wang, R., Nosaka, M., Luo, J.: Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C:H and a-C:H:Si films. Nat. Commun. 8, 1675 (2017). https://doi.org/10.1038/s41467-017-01717-8

    CAS  Article  Google Scholar 

  26. 26.

    Goto, M., Ito, K., Fontaine, J., Takeno, T., Miki, H., Takagi, T.: Formation Processes of Metal-Rich Tribofilm on the Counterface During Sliding Against Metal/Diamondlike-Carbon Nanocomposite Coatings. Tribol. Online. 10, 306–313 (2015). https://doi.org/10.2474/trol.10.306

    Article  Google Scholar 

  27. 27.

    Qin, W., Yue, W., Wang, C.: Understanding integrated effects of humidity and interfacial transfer film formation on tribological behaviors of sintered polycrystalline diamond. RSC Adv. 5, 53484–53496 (2015). https://doi.org/10.1039/C5RA09327A

    CAS  Article  Google Scholar 

  28. 28.

    Zhang, X., Schneider, R., Müller, E., Mee, M., Meier, S., Gumbsch, P., Gerthsen, D.: Electron microscopic evidence for a tribologically induced phase transformation as the origin of wear in diamond. J. Appl. Phys. 115, 063508 (2014). https://doi.org/10.1063/1.4865742

    CAS  Article  Google Scholar 

  29. 29.

    De Barros Bouchet, M.I., Matta, C., Vacher, B., Le-Mogne, T., Martin, J.M., von Lautz, J., Ma, T., Pastewka, L., Otschik, J., Gumbsch, P., Moseler, M.: Energy filtering transmission electron microscopy and atomistic simulations of tribo-induced hybridization change of nanocrystalline diamond coating. Carbon. 87, 317–329 (2015). https://doi.org/10.1016/j.carbon.2015.02.041

    CAS  Article  Google Scholar 

  30. 30.

    Fontaine, J., Loubet, J.L., Mogne, T.L., Grill, A.: Superlow friction of diamond-like carbon films: a relation to viscoplastic properties. Tribol. Lett. 17, 709–714 (2004). https://doi.org/10.1007/s11249-004-8077-x

    CAS  Article  Google Scholar 

  31. 31.

    Menčík, J., Rauchs, G., Bardon, J., Riche, A.: Determination of elastic modulus and hardness of viscoelastic-plastic materials by instrumented indentation under harmonic load. J. Mater. Res. 20, 2660–2669 (2005). https://doi.org/10.1557/JMR.2005.0338

    CAS  Article  Google Scholar 

  32. 32.

    Langford, R.M., Petford-Long, A.K.: Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J. Vac. Sci. Technol. A. 19, 2186–2193 (2001). https://doi.org/10.1116/1.1378072

    CAS  Article  Google Scholar 

  33. 33.

    Hart, J.L., Lang, A.C., Leff, A.C., Longo, P., Trevor, C., Twesten, R.D., Taheri, M.L.: Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity. Sci. Rep. 7, 8243 (2017). https://doi.org/10.1038/s41598-017-07709-4

    CAS  Article  Google Scholar 

  34. 34.

    Ponsonnet, L., Donnet, C., Varlot, K., Martin, J.M., Grill, A., Patel, V.: EELS analysis of hydrogenated diamond-like carbon films. Thin Solid Films. 319, 97–100 (1998). https://doi.org/10.1016/S0040-6090(97)01094-8

    CAS  Article  Google Scholar 

  35. 35.

    Varlot, K., Martin, J.M., Quet, C., Kihn, Y.: Towards sub-nanometer scale EELS analysis of polymers in the TEM. Ultramicroscopy. 68, 123–133 (1997). https://doi.org/10.1016/S0304-3991(97)00019-3

    CAS  Article  Google Scholar 

  36. 36.

    Egerton, R.F.: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009). https://doi.org/10.1088/0034-4885/72/1/016502

    CAS  Article  Google Scholar 

  37. 37.

    Donnet, C., Mogne, T.L., Ponsonnet, L., Belin, M., Grill, A., Patel, V., Jahnes, C.: The respective role of oxygen and water vapor on the tribology of hydrogenated diamond-like carbon coatings. Tribol. Lett. 4, 259–265 (1998). https://doi.org/10.1023/A:1019140213257

    CAS  Article  Google Scholar 

  38. 38.

    Holmberg, K., Mathews, A.: Coatings tribology: a concept, critical aspects and future directions. Thin Solid Films. 253, 173–178 (1994). https://doi.org/10.1016/0040-6090(94)90315-8

    CAS  Article  Google Scholar 

  39. 39.

    Liu, S., Zhang, C., Osman, E., Chen, X., Ma, T., Hu, Y., Luo, J., Ali, E.: Influence of tribofilm on superlubricity of highly-hydrogenated amorphous carbon films in inert gaseous environments. Sci. China Technol. Sci. 1–9 (2016). https://doi.org/10.1007/s11431-016-0078-6

    CAS  Article  Google Scholar 

  40. 40.

    Wang, P., Hirose, M., Suzuki, Y., Adachi, K.: Carbon tribo-layer for super-low friction of amorphous carbon nitride coatings in inert gas environments. Surf. Coat. Technol. 221, 163–172 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.045

    CAS  Article  Google Scholar 

  41. 41.

    Salvaro, D.B., Silvério, M., Binder, C., Giacomelli, R.O., Klein, A.N., de Mello, J.D.B.: Genesis and stability of tribolayers in solid lubrication: case of pair DLC-stainless steel. J. Mater. Res. Technol. 5, 136–143 (2016). https://doi.org/10.1016/j.jmrt.2015.10.008

    CAS  Article  Google Scholar 

  42. 42.

    Benedet, J., Green, J.H., Lamb, G.D., Spikes, H.A.: Spurious Mild Wear Measurement Using White Light Interference Microscopy in the Presence of Antiwear Films. Tribol. Trans. 52, 841–846 (2009). https://doi.org/10.1080/10402000903180696

    CAS  Article  Google Scholar 

  43. 43.

    Shuman, D.J., Costa, A.L.M., Andrade, M.S.: Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact. 58, 380–389 (2007). https://doi.org/10.1016/j.matchar.2006.06.005

    CAS  Article  Google Scholar 

  44. 44.

    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992). https://doi.org/10.1557/JMR.1992.1564

    CAS  Article  Google Scholar 

  45. 45.

    Saraswati, T., Sritharan, T., Mhaisalkar, S., Breach, C.D., Wulff, F.: Cyclic loading as an extended nanoindentation technique. Mater. Sci. Eng. A. 423, 14–18 (2006). https://doi.org/10.1016/j.msea.2005.10.080

    CAS  Article  Google Scholar 

  46. 46.

    Chen, Z., Diebels, S., Peter, N.J., Schneider, A.S.: Identification of finite viscoelasticity and adhesion effects in nanoindentation of a soft polymer by inverse method. Comput. Mater. Sci. 72, 127–139 (2013). https://doi.org/10.1016/j.commatsci.2013.01.040

    CAS  Article  Google Scholar 

  47. 47.

    Pathak, S., Cambaz, Z.G., Kalidindi, S.R., Swadener, J.G., Gogotsi, Y.: Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon. 47, 1969–1976 (2009). https://doi.org/10.1016/j.carbon.2009.03.042

    CAS  Article  Google Scholar 

  48. 48.

    Chang, B.T.-A., Li, J.C.M.: Indentation recovery of amorphous materials. Scr. Metall. 13, 51–54 (1979). https://doi.org/10.1016/0036-9748(79)90388-0

    CAS  Article  Google Scholar 

  49. 49.

    Thompson, J.B., Kindt, J.H., Drake, B., Hansma, H.G., Morse, D.E., Hansma, P.K.: Bone indentation recovery time correlates with bond reforming time. Nature. 414, 773–776 (2001). https://doi.org/10.1038/414773a

    CAS  Article  Google Scholar 

  50. 50.

    Adams, M.J., Gorman, D.M., Johnson, S.A., Briscoe, B.J.: Indentation depth recovery in poly(methyl methacrylate) sheet on the microlength scale. Philos. Mag. A. 82, 2121–2131 (2002). https://doi.org/10.1080/01418610208235722

    CAS  Article  Google Scholar 

  51. 51.

    Guin, J.-P., Rouxel, T., Keryvin, V., Sanglebœuf, J.-C., Serre, I., Lucas, J.: Indentation creep of Ge–Se chalcogenide glasses below Tg: elastic recovery and non-Newtonian flow. J. Non-Cryst. Solids. 298, 260–269 (2002). https://doi.org/10.1016/S0022-3093(01)01053-5

    CAS  Article  Google Scholar 

  52. 52.

    Golovin, Y.I., Ivolgin, V.I., Ryabko, R.I.: Viscoelastic recovery of various materials in the region of a dynamic nanocontact. Tech. Phys. Lett. 30, 202–204 (2004). https://doi.org/10.1134/1.1707167

    CAS  Article  Google Scholar 

  53. 53.

    Tweedie, C.A., Van Vliet, K.J.: On the indentation recovery and fleeting hardness of polymers. J. Mater. Res. 21, 3029–3036 (2006). https://doi.org/10.1557/jmr.2006.0377

    CAS  Article  Google Scholar 

  54. 54.

    Trunov, M.L., Bilanich, V.S., Dub, S.N.: Nanoindentation study of the time-dependent mechanical behavior of materials. Tech. Phys. 52, 1298–1305 (2007). https://doi.org/10.1134/S1063784207100088

    CAS  Article  Google Scholar 

  55. 55.

    Golovin, Y.I.: Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films. A Review. Phys. Solid State. 50, 2205–2236 (2008). https://doi.org/10.1134/S1063783408120019

    CAS  Article  Google Scholar 

  56. 56.

    Bec, S., Tonck, A., Fontaine, J.: Nanoindentation and nanofriction on DLC films. Philos. Mag. 86, 5465–5476 (2006). https://doi.org/10.1080/14786430600596845

    CAS  Article  Google Scholar 

  57. 57.

    Walter, C., Mitterer, C.: 3D versus 2D finite element simulation of the effect of surface roughness on nanoindentation of hard coatings. Surf. Coat. Technol. 203, 3286–3290 (2009). https://doi.org/10.1016/j.surfcoat.2009.04.006

    CAS  Article  Google Scholar 

  58. 58.

    Kim, J.-Y., Lee, J.-J., Lee, Y.-H., Jang, J., Kwon, D.: Surface roughness effect in instrumented indentation: A simple contact depth model and its verification. J. Mater. Res. 21, 2975–2978 (2006). https://doi.org/10.1557/jmr.2006.0370

    CAS  Article  Google Scholar 

  59. 59.

    Bobji, M.S., Biswas, S.K., Pethica, J.B.: Effect of roughness on the measurement of nanohardness—a computer simulation study. Appl. Phys. Lett. 71, 1059–1061 (1997). https://doi.org/10.1063/1.119727

    CAS  Article  Google Scholar 

  60. 60.

    Lucas, B.N., Oliver, W.C., Pharr, G.M., Loubet, J.L.: Time Dependent Deformation During Indentation Testing. In: Symposium CC—Thin Films Stresses and Mechanical Properties VI: (1996)

  61. 61.

    Chong, A.C.M., Lam, D.C.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14, 4103–4110 (1999). https://doi.org/10.1557/JMR.1999.0554

    CAS  Article  Google Scholar 

  62. 62.

    Lam, D.C.C., Chong, A.C.M.: Indentation model and strain gradient plasticity law for glassy polymers. J. Mater. Res. 14, 3784–3788 (1999). https://doi.org/10.1557/JMR.1999.0512

    CAS  Article  Google Scholar 

  63. 63.

    Zhang, T.-Y., Xu, W.-H.: Surface Effects on Nanoindentation. J. Mater. Res. 17, 1715–1720 (2002). https://doi.org/10.1557/JMR.2002.0254

    CAS  Article  Google Scholar 

  64. 64.

    Cordill, M.J., Lund, M.S., Parker, J., Leighton, C., Nair, A.K., Farkas, D., Moody, N.R., Gerberich, W.W.: The Nano-Jackhammer effect in probing near-surface mechanical properties. Int. J. Plast. 25, 2045–2058 (2009). https://doi.org/10.1016/j.ijplas.2008.12.015

    CAS  Article  Google Scholar 

  65. 65.

    Siu, K.W., Ngan, A.H.W.: The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample. Philos. Mag. 93, 449–467 (2013). https://doi.org/10.1080/14786435.2012.722234

    CAS  Article  Google Scholar 

  66. 66.

    Cordill, M.J., Moody, N.R., Gerberich, W.W.: Effects of dynamic indentation on the mechanical response of materials. J. Mater. Res. 23, 1604–1613 (2008). https://doi.org/10.1557/JMR.2008.0205

    CAS  Article  Google Scholar 

  67. 67.

    Fielda, J.S., Swain, M.V.: The indentation characterisation of the mechanical properties of various carbon materials: Glassy carbon, coke and pyrolytic graphite. Carbon. 34, 1357–1366 (1996). https://doi.org/10.1016/S0008-6223(96)00071-1

    Article  Google Scholar 

  68. 68.

    Sakai, M., Nakano, Y.: Instrumented pyramidal and spherical indentation of polycrystalline graphite. J. Mater. Res. 19, 228–236 (2004). https://doi.org/10.1557/jmr.2004.19.1.228

    CAS  Article  Google Scholar 

  69. 69.

    Fu, W., Chung, D.D.L.: Vibration reduction ability of polymers, particularly polymethylmethacrylate and polytetrafluoroethylene. Polym. Polym. Compos. 9, 423–426 (2001)

    CAS  Google Scholar 

  70. 70.

    Fontaine, J., Le Mogne, T., Loubet, J.L., Belin, M.: Achieving superlow friction with hydrogenated amorphous carbon: some key requirements. Thin Solid Films. 482, 99–108 (2005). https://doi.org/10.1016/j.tsf.2004.11.126

    CAS  Article  Google Scholar 

  71. 71.

    Hahn, J.R.: Kinetic study of graphite oxidation along two lattice directions. Carbon. 43, 1506–1511 (2005). https://doi.org/10.1016/j.carbon.2005.01.032

    CAS  Article  Google Scholar 

  72. 72.

    de Theije, F.K., Roy, O., van der Laag, N.J., van Enckevort, W.J.P.: Oxidative etching of diamond. Diam. Relat. Mater. 9, 929–934 (2000). https://doi.org/10.1016/S0925-9635(99)00239-3

    Article  Google Scholar 

  73. 73.

    Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener, K.E. Jr., Robinson, J.T., Walton, S.G., Sheehan, P.E.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, (2015). https://doi.org/10.1038/ncomms7467

  74. 74.

    Collom, S.L., Anastas, P.T., Beach, E.S., Crabtree, R.H., Hazari, N., Sommer, T.J.: Differing selectivities in mechanochemical versus conventional solution oxidation using Oxone. Tetrahedron Lett. 54, 2344–2347 (2013). https://doi.org/10.1016/j.tetlet.2013.02.056

    CAS  Article  Google Scholar 

  75. 75.

    Conway, N.M.J., Ferrari, A.C., Flewitt, A.J., Robertson, J., Milne, W.I., Tagliaferro, A., Beyer, W.: Defect and disorder reduction by annealing in hydrogenated tetrahedral amorphous carbon. Diam. Relat. Mater. 9, 765–770 (2000). https://doi.org/10.1016/S0925-9635(99)00271-X

    CAS  Article  Google Scholar 

  76. 76.

    Rose, F., Wang, N., Smith, R., Xiao, Q.-F., Inaba, H., Matsumura, T., Saito, Y., Matsumoto, H., Dai, Q., Marchon, B., Mangolini, F., Carpick, R.W.: Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing. J. Appl. Phys. 116, 123516 (2014). https://doi.org/10.1063/1.4896838

    CAS  Article  Google Scholar 

  77. 77.

    Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000). https://doi.org/10.1103/PhysRevB.61.14095

    CAS  Article  Google Scholar 

  78. 78.

    Cui, L., Zhou, H., Zhang, K., Lu, Z., Wang, X.: Bias voltage dependence of superlubricity lifetime of hydrogenated amorphous carbon films in high vacuum. Tribol. Int. https://doi.org/10.1016/j.triboint.2017.08.020

    CAS  Article  Google Scholar 

  79. 79.

    Ni, Z.H.: Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 77, (2008). https://doi.org/10.1103/PhysRevB.77.115416

  80. 80.

    Swain, B.P.: The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy. Surf. Coat. Technol. 201, 1589–1593 (2006). https://doi.org/10.1016/j.surfcoat.2006.02.029

    CAS  Article  Google Scholar 

  81. 81.

    Lu, W., Feldman, L.C., Song, Y., Dhar, S., Collins, W.E., Mitchel, W.C., Williams, J.R.: Graphitic features on SiC surface following oxidation and etching using surface enhanced Raman spectroscopy. Appl. Phys. Lett. 85, 3495 (2004). https://doi.org/10.1063/1.1804610

    CAS  Article  Google Scholar 

  82. 82.

    Windl, W.: Second-order Raman spectra of SiC: experimental and theoretical results from ab initio phonon calculations. Phys. Rev. B. 49, 8764–8767 (1994). https://doi.org/10.1103/PhysRevB.49.8764

    CAS  Article  Google Scholar 

  83. 83.

    Swanson, N., Powell, C.J.: Excitation of π electrons in polystyrene and similar polymers by 20 keV electrons. J. Chem. Phys. 39, 630–634 (1963). https://doi.org/10.1063/1.1734302

    CAS  Article  Google Scholar 

  84. 84.

    Ferrari, A.C., Libassi, A., Tanner, B.K., Stolojan, V., Yuan, J., Brown, L.M., Rodil, S.E., Kleinsorge, B., Robertson, J.: Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B. 62, 11089–11103 (2000). https://doi.org/10.1103/PhysRevB.62.11089

    CAS  Article  Google Scholar 

  85. 85.

    Mangolini, F., Hilbert, J., McClimon, J.B., Lukes, J.R., Carpick, R.W.: Thermally induced structural evolution of silicon- and oxygen-containing hydrogenated amorphous carbon: a combined spectroscopic and molecular dynamics simulation investigation. Langmuir. 34, 2989–2995 (2018). https://doi.org/10.1021/acs.langmuir.7b04266

    CAS  Article  Google Scholar 

  86. 86.

    Fukui, H., Irie, M., Utsumi, Y., Oda, K., Ohara, H.: An investigation of the wear track on DLC (a-C:H) film by time-of-flight secondary ion mass spectroscopy. Surf. Coat. Technol. 146–147, 378–383 (2001). https://doi.org/10.1016/S0257-8972(01)01422-0

    Article  Google Scholar 

  87. 87.

    Chen, X., Kato, T., Nosaka, M.: Origin of superlubricity in a-C:H:Si films: a relation to film bonding structure and environmental molecular characteristic. ACS Appl. Mater. Interfaces. 6, 13389–13405 (2014). https://doi.org/10.1021/am502416w

    CAS  Article  Google Scholar 

  88. 88.

    Liu, Y., Meletis, E.I.: Evidence of graphitization of diamond-like carbon films during sliding wear. J. Mater. Sci. 32, 3491–3495 (1997). https://doi.org/10.1023/A:1018641304944

    CAS  Article  Google Scholar 

  89. 89.

    Koshigan, K.D.: Understanding the influence of environment on the solid lubrication processes of carbon-based thin films. Ecully, Ecole centrale de Lyon (2015)

    Google Scholar 

  90. 90.

    Eryilmaz, O.L., Erdemir, A.: Surface analytical investigation of nearly-frictionless carbon films after tests in dry and humid nitrogen. Surf. Coat. Technol. 201, 7401–7407 (2007). https://doi.org/10.1016/j.surfcoat.2007.02.005

    CAS  Article  Google Scholar 

  91. 91.

    Sánchez-López, J.C., Belin, M., Donnet, C., Quirós, C., Elizalde, E.: Friction mechanisms of amorphous carbon nitride films under variable environments: a triboscopic study. Surf. Coat. Technol. 160, 138–144 (2002). https://doi.org/10.1016/S0257-8972(02)00397-3

    Article  Google Scholar 

  92. 92.

    Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013). https://doi.org/10.1007/s10853-012-7038-2

    CAS  Article  Google Scholar 

  93. 93.

    McGuiggan, P.M., Hsu, S.M., Fong, W., Bogy, D., Bhatia, C.S.: Friction measurements of ultra-thin carbon overcoats in air. J. Tribol. 124, 239–244 (1999). https://doi.org/10.1115/1.1387035

    CAS  Article  Google Scholar 

  94. 94.

    Pastewka, L., Robbins, M.O.: Contact area of rough spheres: large scale simulations and simple scaling laws. Appl. Phys. Lett. 108, 221601 (2016). https://doi.org/10.1063/1.4950802

    CAS  Article  Google Scholar 

  95. 95.

    Lin, Y.-H.: Polymer Viscoelasticity: Basics, Molecular Theories, Experiments and Simulations. World Scientific Publishing Company, New Jersey (2010)

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Advanced Storage Technology Consortium ASTC (Grant 2011-012), the National Science Foundation under Grant No. DMR-1107642, the National Science Foundation through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530), and by the Agence Nationale de la Recherche under Grant No. ANR-11- NS09-01 through the Materials World Network program. Additional travel support was provided by Programme Avenir Lyon-Saint-Etienne and Region Rhône-Alpes. NSF Major Research Instrumentation Grant DMR-0923245 and use of the Scanning and Local Probe Facility of the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant NNCI-1542153, are acknowledged. J.B.M. acknowledges support of a Graduate Research Supplement for Veterans from the Directorate for Mathematical and Physical Sciences at the National Science Foundation. MLT and ACL gratefully acknowledge funding from the National Science Foundation Major Instrumentation Award #1429661. The authors would like to thank Prof. Kevin Turner for use of the Hysitron TI-950 Triboindenter and Dr. Yijie Jiang for extensive training and assistance in the use of the indenter. The authors would also like to thank Michel Belin and Dr. Komlavi Dzidula Koshigan for instruction and advice in the use of the environmental tribometer. F.M. acknowledges support from the Marie Curie International Outgoing Fellowship for Career Development within the 7th European Community Framework Program under contract no. PIOF-GA-2012-328776 and the Marie Skłodowska-Curie Individual Fellowship within the European Union’s Horizon 2020 Program under contract no. 706289. The acquisition of the instrumentation used for this work was partially supported by the U.S. Department of Defense DURIP program under Air Force Grant FA9550-16-1-0525.

Author information

Affiliations

Authors

Corresponding author

Correspondence to R. W. Carpick.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14620 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McClimon, J.B., Lang, A.C., Milne, Z. et al. Investigation of the Mechanics, Composition, and Functional Behavior of Thick Tribofilms Formed from Silicon- and Oxygen-Containing Hydrogenated Amorphous Carbon. Tribol Lett 67, 48 (2019). https://doi.org/10.1007/s11249-019-1155-x

Download citation

Keywords

  • Diamond-like carbon
  • Silicon and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O)
  • Hydrogenated amorphous carbon (a-C:H)
  • Tribofilm
  • Transfer film
  • Nanoindentation