Contact Area and Shear Stress in Repeated Single-Asperity Sliding of Steel on Polymer

Abstract

A model for the contact area of a single asperity sliding in a groove after repeated cycles is presented. Based only on the asperity geometry and on data from friction experiments, the model predicts the area of the asymmetric elliptical contact of the asperity sliding in its own groove. It thus allows to determine the shear stress of the steel–polymer couple in the relevant geometry without need for further microscopy of indenter or groove. The model was validated by experiments with an indenter manufactured from slide bearing steel and polyether-ether ketone (PEEK) as substrate. In experiments of 1000 repeated cycles, the contact area was found to vary with varying load and sliding velocity, while the shear stress was 20.5 MPa at a normal pressure of 50–70 MPa, independent of velocity when friction heating is still negligible. Model and experimental confirmation advance single-asperity friction experiments into an efficient method to extract shear stress and contact area for an understanding of sliding friction in metal-polymer contacts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Bowden, F.P., Moore, A.J.W., Tabor, D.: The ploughing and adhesion of sliding metals. J. Appl. Phys. 14(2), 80–91 (1943). https://doi.org/10.1063/1.1714954

    Article  Google Scholar 

  2. 2.

    Gane, N., Bowden, F.P.: Microdeformation of solids. J. Appl. Phys. 39(3), 1432–1435 (1968). https://doi.org/10.1063/1.1656376

    CAS  Article  Google Scholar 

  3. 3.

    Iqbal, T., Yasin, S., Luckham, P.F., Ramzan, N., Mohsin, M.: Scratch deformations of poly (ether ether ketone) composites. Fibers Polym. 15(5), 1042–1050 (2014). https://doi.org/10.1007/s12221-014-1042-x

    CAS  Article  Google Scholar 

  4. 4.

    Jiang, H., Browning, R., Sue, H.-J.: Understanding of scratch-induced damage mechanisms in polymers. Polymer. 50(16), 4056–4065 (2009). https://doi.org/10.1016/j.polymer.2009.06.061

    CAS  Article  Google Scholar 

  5. 5.

    Krupička, A., Johansson, M., Hult, A.: Use and interpretation of scratch tests on ductile polymer coatings. Prog. Org. Coat. 46(1), 32–48 (2003). https://doi.org/10.1016/S0300-9440(02)00184-4

    Article  Google Scholar 

  6. 6.

    Briscoe, B.J., Evans, P.D., Lancaster, J.K.: Single point deformation and abrasion of γ-irradiated poly(tetrafluoroethylene). J. Phys. D 20(3), 346 (1987)

    CAS  Article  Google Scholar 

  7. 7.

    Woldman, M., Van Der Heide, E., Tinga, T., Masen, M.A.: The influence of abrasive body dimensions on single asperity wear. Wear. 301(1–2), 76–81 (2013). https://doi.org/10.1016/j.wear.2012.12.009

    CAS  Article  Google Scholar 

  8. 8.

    Hadal, R.S., Misra, R.D.K.: Scratch deformation behavior of thermoplastic materials with significant differences in ductility. Mater. Sci. Eng. A. 398(1–2), 252–261 (2005). https://doi.org/10.1016/j.msea.2005.03.028

    CAS  Article  Google Scholar 

  9. 9.

    Rajesh, J.J., Bijwe, J.: Investigations on scratch behaviour of various polyamides. Wear. 259(1–6), 661–668 (2005). https://doi.org/10.1016/j.wear.2004.12.018

    CAS  Article  Google Scholar 

  10. 10.

    Bermudez, M.D., Brostow, W., Carrion-Vilches, F.J., Cervantes, J.J., Pietkiewicz, D.: Wear of thermoplastics determined by multiple scratching. e-Polymers 001 (2005)

  11. 11.

    Pei, X.-Q., Lin, L.-Y., Schlarb, A.K., Bennewitz, R.: Novel experiments reveal scratching and transfer film mechanisms in the sliding of the PEEK/steel tribosystem. Tribol. Lett. 63(3), 1–9 (2016). https://doi.org/10.1007/s11249-016-0732-5

    CAS  Article  Google Scholar 

  12. 12.

    Bowden, F.P., Tabor, D.: The area of contact between stationary and between moving surfaces. Proc. R. Soc. Lond. 169(938), 391–413 (1939)

    Article  Google Scholar 

  13. 13.

    D7027-13, A: Standard Test Method for Evaluation of Scratch Resistance of Polymeric Coatings and Plastics Using an Instrumented Scratch Machine. ASTM International, West Conshohocken (2013) http://www.astm.org

  14. 14.

    Gauthier, C., Lafaye, S., Schirrer, R.: Elastic recovery of a scratch in a polymeric surface: experiments and analysis. Tribol. Int. 34(7), 469–479 (2001). https://doi.org/10.1016/S0301-679X(01)00043-3

    CAS  Article  Google Scholar 

  15. 15.

    Lafaye, S., Gauthier, C., Schirrer, R.: Analysis of the apparent friction of polymeric surfaces. J. Mater. Sci. 41(19), 6441–6452 (2006). https://doi.org/10.1007/s10853-006-0710-7

    CAS  Article  Google Scholar 

  16. 16.

    Malzbender, J., den Toonder, J.M.J., Balkenende, A.R., de With, G.: Measuring mechanical properties of coatings: a methodology applied to nano-particle-filled sol–gel coatings on glass. Mater. Sci. Eng. 36(2), 47–103 (2002). https://doi.org/10.1016/S0927-796X(01)00040-7

    Article  Google Scholar 

  17. 17.

    Puttock, M.J., Thwaite, E.G.: Elastic compression of spheres and cylinders at point and line contact. National Standards Laboratory Technical Paper No. 25 Commonwealth Scientific and Industrial Research Organization, Australia (1969)

  18. 18.

    Pei, X.-Q., Bennewitz, R., Kasper, C., Tlatlik, H., Bentz, D., Becker-Willinger, C.: Tribological synergy of filler components in multi-functional polyimide coatings. Adv. Eng. Mater. 19(1), 1600363 (2017)

    Article  Google Scholar 

  19. 19.

    Villat, C., Ponthiaux, P., Pradelle-Plasse, N., Grosgogeat, B., Colon, P.: Initial sliding wear kinetics of two types of glass ionomer cement: a tribological study. Biomed. Res. Int. (2014). https://doi.org/10.1155/2014/790572

    Article  Google Scholar 

  20. 20.

    Jiang, H., Browning, R., Fincher, J., Gasbarro, A., Jones, S., Sue, H.-J.: Influence of surface roughness and contact load on friction coefficient and scratch behavior of thermoplastic olefins. Appl. Surf. Sci. 254(15), 4494–4499 (2008). https://doi.org/10.1016/j.apsusc.2008.01.067

    CAS  Article  Google Scholar 

  21. 21.

    Zhang, G., Liao, H., Li, H., Mateus, C., Bordes, J.M., Coddet, C.: On dry sliding friction and wear behaviour of PEEK and PEEK/SiC-composite coatings. Wear. 260(6), 594–600 (2006). https://doi.org/10.1016/j.wear.2005.03.017

    CAS  Article  Google Scholar 

  22. 22.

    Rzatki, F.D., Barboza, D.V.D., Schroeder, R.M., Barra, G.M.d.O., Binder, C., Klein, A.N., de Mello, J.D.B.: Effect of surface finishing, temperature and chemical ageing on the tribological behaviour of a polyether ether ketone composite/52100 pair. Wear. 332–333, 844–854 (2015). https://doi.org/10.1016/j.wear.2014.12.035

    CAS  Article  Google Scholar 

  23. 23.

    Schroeder, R., Torres, F.W., Binder, C., Klein, A.N., de Mello, J.D.B.: Failure mode in sliding wear of PEEK based composites. Wear. 301(1–2), 717–726 (2013). https://doi.org/10.1016/j.wear.2012.11.055

    CAS  Article  Google Scholar 

  24. 24.

    Chen, F., Ou, H., Gatea, S., Long, H.: Hot tensile fracture characteristics and constitutive modelling of polyether-ether-ketone (PEEK). Polym. Testing. 63, 168–179 (2017). https://doi.org/10.1016/j.polymertesting.2017.07.032

    CAS  Article  Google Scholar 

  25. 25.

    Laux, K.A., Jean-Fulcrand, A., Sue, H.J., Bremner, T., Wong, J.S.S.: The influence of surface properties on sliding contact temperature and friction for polyetheretherketone (PEEK). Polymer. 103, 397–404 (2016). https://doi.org/10.1016/j.polymer.2016.09.064

    CAS  Article  Google Scholar 

  26. 26.

    Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade British. J. Appl. Phys. 17(12), 1521–1544 (1966)

    CAS  Google Scholar 

  27. 27.

    McGhee, E.O., Pitenis, A.A., Urueña, J.M., Schulze, K.D., McGhee, A.J., O’Bryan, C.S., Bhattacharjee, T., Angelini, T.E., Sawyer, W.G.: In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology. 13, 23–29 (2018). https://doi.org/10.1016/j.biotri.2017.12.002

    Article  Google Scholar 

  28. 28.

    Stuart, B.H., Briscoe, B.J.: The effect of crystallinity on the scratch hardness of poly(ether ether ketone). Polym. Bull. 36(6), 767–771 (1996). https://doi.org/10.1007/bf00338642

    CAS  Article  Google Scholar 

  29. 29.

    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids, (Vol. 2). Clarendon Press, Oxford (1964)

    Google Scholar 

  30. 30.

    Briscoe, B.J., Stuart, B.H., Sebastian, S., Tweedale, P.J.: The failure of poly (ether ether ketone) in high speed contacts. Wear 162–164, 407–417 (1993). https://doi.org/10.1016/0043-1648(93)90524-P

    Article  Google Scholar 

  31. 31.

    Popov, V.: Contact Mechanics and Friction: Physical Principles and Applications (Vol. 55), Springer, Amsterdam (2010)

    Google Scholar 

  32. 32.

    Bellemare, S., Dao, M., Suresh, S.: The frictional sliding response of elasto-plastic materials in contact with a conical indenter. Int. J. Solids Struct. 44(6), 1970–1989 (2007). https://doi.org/10.1016/j.ijsolstr.2006.08.008

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support of the German Research Foundation (Deutsche Forschungsgemeinschaft) on the projects BE 4238/7-2 and SCHL 280/22-2, Evonik Industries AG, Germany, for the donation of the experimental materials, and thank Eduard Arzt for the continuous support of this project. The authors are also grateful to Karl-Peter Schmitt of INM for his help in tribological tests.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xian-Qiang Pei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pei, X., Lin, L., Schlarb, A.K. et al. Contact Area and Shear Stress in Repeated Single-Asperity Sliding of Steel on Polymer. Tribol Lett 67, 30 (2019). https://doi.org/10.1007/s11249-019-1146-y

Download citation

Keywords

  • Asperity scratching
  • Contact area
  • Shearing
  • PEEK