The Contact Mechanics of Coated Elastic Solids: Effect of Coating Thickness and Stiffness

Abstract

We investigate the adhesive and adhesiveless contact between a rigid regular wavy profile and an elastic substrate coated with an elastic layer. The contact stiffness is strongly influenced by the elasticity and thickness of the coating layer. Specifically, coatings more compliant than the substrate entail larger contact area, and vice versa. Under adhesive conditions, thin soft coatings may lead to complete contact, regardless of the applied load. Moreover, enhanced adhesive strength (toughness) can be achieved at the pull-off by adopting stiff (compliant) coatings. We compare our exact model with the Bec/Tonck model, which is one of the most adopted approximate model for biological tissues contact mechanics. The results show that predictions of the proposed model are in better qualitative agreement with experimental results taken from the literature.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A 295(1442), 300–319 (1966)

    CAS  Google Scholar 

  2. 2.

    Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35, 87–111 (1975)

    Article  Google Scholar 

  3. 3.

    Ciavarella, M., Demelio, G., Barber, J.R., Jang, Y.H.: Linear elastic contact of the Weierstrass profile. Proc. R. Soc. A 456, 387–405 (2000)

    Article  Google Scholar 

  4. 4.

    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)

    CAS  Article  Google Scholar 

  5. 5.

    Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 100, 024303 (2008)

    CAS  Article  Google Scholar 

  6. 6.

    Almqvist, A., Campana, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids 59, 2355–2369 (2011)

    Article  Google Scholar 

  7. 7.

    Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear 278–279, 28–33 (2012)

    Article  Google Scholar 

  8. 8.

    Menga, N., Putignano, C., Carbone, G., Demelio, G.P.: The sliding contact of a rigid wavy surface with a viscoelastic half-space. Proc. R. Soc. A 470(2169), 20140392 (2014)

    Article  Google Scholar 

  9. 9.

    Menga, N., Carbone, G., Dini, D.: Do uniform tangential interfacial stresses enhance adhesion? J. Mech. Phys. Solids 112, 145–156 (2018)

    Article  Google Scholar 

  10. 10.

    Borri-Brunetto, M., Chiaia, B., Ciavarella, M.: Incipient sliding of rough surfaces in contact: a multiscale numerical analysis. Comput. Meth. Appl. Mech. Eng. 190, 6053–6073 (2001)

    Article  Google Scholar 

  11. 11.

    Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    Campana, C., Mueser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter. 20(35), 354013 (2008)

    Article  Google Scholar 

  13. 13.

    Pastewka, L., Robbins, M.O.: Contact area of rough spheres: large scale simulations and simple scaling laws. Appl. Phys. Lett. 108(22), 221601 (2016)

    Article  Google Scholar 

  14. 14.

    Carbone, G., Putignano, C.: A novel methodology to predict sliding and rolling friction of viscoelastic materials, theory and experiments. J. Mech. Phys. Solids 61, 1822–1834 (2013)

    Article  Google Scholar 

  15. 15.

    Medina, S., Dini, D.: A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int. J. Solids Struct. 51(14), 2620–2632 (2014)

    Article  Google Scholar 

  16. 16.

    Ilincic, S., Vorlaufer, G., Fotiu, P.A., Vernes, A., Franek, F.: Combined finite element-boundary element method modelling of elastic multi-asperity contacts. Proc. Inst. Mech. Eng. J 223(5), 767–776 (2009)

    Article  Google Scholar 

  17. 17.

    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J. Mech. Phys. Solids. 60, 973–982 (2012)

    Article  Google Scholar 

  18. 18.

    Nasdala, L., Kaliske, M., Becker, A., Rothert, H.: An efficient viscoelastic formulation for steady-state rolling structures. Comput. Mech. 22, 395–403 (1998)

    Article  Google Scholar 

  19. 19.

    Afferrante, L., Ciavarella, M., Demelio, G.: Adhesive contact of the Weierstrass profile. Proc. R. Soc. A 471(2182), 20150248 (2015)

    Article  Google Scholar 

  20. 20.

    Menga, N., Afferrante, L., Demelio, G.P., Carbone, G.: Rough contact of sliding viscoelastic layers: numerical calculations and theoretical predictions. Tribol. Int. 122, 67–75 (2018)

    Article  Google Scholar 

  21. 21.

    Burmister, D.M.: The general theory of stresses and displacements in layered systems. I. J. Appl. Phys. 16(2), 89–94 (1945)

    Article  Google Scholar 

  22. 22.

    Burmister, D.M.: The general theory of stresses and displacements in layered soil systems. II. J. Appl. Phys. 16, 126–127 (1945)

    Article  Google Scholar 

  23. 23.

    Burmister, D.M.: The general theory of stresses and displacements in layered soil systems. III. J. Appl. Phys. 16(5), 296–302 (1945)

    Article  Google Scholar 

  24. 24.

    Persson, B.N.J.: Contact mechanics for layered materials with randomly rough surfaces. J. Phys. Condens. Matter 24(9), 095008 (2012)

    CAS  Article  Google Scholar 

  25. 25.

    Zhang, Z., Li, Z.: Analytical solutions for the layered geo-materials subjected to an arbitrary point load in the cartesian coordinate. Acta Mech. Solida Sin. 24(3), 262–272 (2011)

    CAS  Article  Google Scholar 

  26. 26.

    Menga, N., Afferrante, L., Carbone, G.: Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. J. Mech. Phys. Solids 95, 517–529 (2016)

    Article  Google Scholar 

  27. 27.

    Menga, N., Foti, D., Carbone, G.: Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators. Meccanica 52(11–12), 2807–2817 (2017)

    Article  Google Scholar 

  28. 28.

    Sola, A., Bellucci, D., Cannillo, V.: Functionally graded materials for orthopedic applications-an update on design and manufacturing. Biotechnol. Adv. 34(5), 504–531 (2016)

    CAS  Article  Google Scholar 

  29. 29.

    van Kuilenburg, J., Masen, M.A., van der Heide, E.: Contact modelling of human skin: what value to use for the modulus of elasticity? Proc. Inst. Mech. Eng. J 227(4), 349–361 (2013)

    Article  Google Scholar 

  30. 30.

    Hurtado, M.M., Peppelman, M., Zeng, X., Van Erp, P.E.J., Van Der Heide, E.: Tribological behaviour of skin equivalents and ex-vivo human skin against the material components of artificial turf in sliding contact. Tribol. Int. 102, 103–113 (2016)

    CAS  Article  Google Scholar 

  31. 31.

    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  32. 32.

    Menga, N., Afferrante, L., Carbone, G.: Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates. Int. J. Solids Struct. 88, 101–109 (2016)

    Article  Google Scholar 

  33. 33.

    Bec, S., Tonck, A., Georges, J.M., Georges, E., Loubet, J.L.: Improvements in the indentation method with a surface force apparatus. Philos. Mag. A 74(5), 1061–1072 (1996)

    CAS  Article  Google Scholar 

  34. 34.

    Bec, S., Tonck, A., Georges, J.M., Coy, R.C., Bell, J.C., Roper, G.W.: Relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films. Proc. R. Soc. Lond A 455(1992), 4181–4203 (1999)

    CAS  Article  Google Scholar 

  35. 35.

    Rar, A., Song, H., Pharr, G. M.: Assessment of new relation for the elastic compliance of a film-substrate system. In: MRS Online Proceedings Library Archive, vol. 695 (2001)

  36. 36.

    McGuiggan, P.M., Wallace, J.S., Smith, D.T., Sridhar, I., Zheng, Z.W., Johnson, K.L.: Contact mechanics of layered elastic materials: experiment and theory. J. Phys. D 40(19), 5984 (2007)

    CAS  Article  Google Scholar 

  37. 37.

    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324(1558), 301–313 (1971)

    CAS  Article  Google Scholar 

  38. 38.

    Carbone, G., Mangialardi, L.: Analysis of the adhesive contact of confined layers by using a Green’s function approach. J. Mech. Phys. Solids 56(2), 684–706 (2008)

    CAS  Article  Google Scholar 

  39. 39.

    Maugis, D.: Contact Adhesion and Rupture of Elastic Solids. Springer, Berlin (2000)

    Google Scholar 

  40. 40.

    Pailler-Mattei, C., Bec, S., Zahouani, H.: In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 30(5), 599–606 (2008)

    CAS  Article  Google Scholar 

  41. 41.

    Persson, B.N.J., Kovalev, A., Gorb, S.N.: Contact mechanics and friction on dry and wet human skin. Tribol. Lett. 50(1), 17–30 (2013)

    Article  Google Scholar 

  42. 42.

    Kovalev, A.E., Dening, K., Persson, B.N., Gorb, S.N.: Surface topography and contact mechanics of dry and wet human skin. Beilstein J. Nanotechnol. 5, 1341 (2014)

    CAS  Article  Google Scholar 

  43. 43.

    Koiter, W.T.: An infinite row of collinear cracks in an infinite elastic sheet. Ing. Arch. 28, 168–172 (1959)

    Article  Google Scholar 

  44. 44.

    Sneddon, I.N.: Application of Integral Transforms in the Theory of Elasticity. CISM 220. Springer, Berlin (1975)

    Google Scholar 

  45. 45.

    Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26(3), 239–253 (2007)

    CAS  Article  Google Scholar 

  46. 46.

    Renvoise, J., Burlot, D., Marin, G., Derail, C.: Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. Int. J. Pharm. 368(1–2), 83–88 (2009)

    CAS  Article  Google Scholar 

  47. 47.

    Pailler-Mattei, C., Zahouani, H.: Study of adhesion forces and mechanical properties of human skin in vivo. J. Adhes. Sci. Technol. 18(15–16), 1739–1758 (2004)

    CAS  Article  Google Scholar 

  48. 48.

    Pailler-Mattei, C., Nicoli, S., Pirot, F., Vargiolu, R., Zahouani, H.: A new approach to describe the skin surface physical properties in vivo. Colloids Surf. B 68(2), 200–206 (2009)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to N. Menga.

Appendix A: Derivation of the periodic Green’s functions

Appendix A: Derivation of the periodic Green’s functions

In this section, the periodic Green’s function for the layered geometry investigated in the present paper is derived according to the procedure given in Ref. [26].

First let us recall that for a general 1D + 1D elastic contact under linearity and translational invariance (i.e., in-plane homogeneity) conditions, the relation between the interfacial normal stresses \(\sigma \left( x\right)\) and the surface normal displacements \(u\left( x\right)\) can be written as a convolution product, i.e.,

$$\begin{aligned} u\left( x\right) =\int {\rm{d}}x^{\prime }G\left( x-x^{\prime }\right) \sigma \left( x^{\prime }\right) \end{aligned}$$
(13)

where \(G\left( x\right)\) is the Green’s function. Taking the space Fourier transform of Eq. (13) one obtains

$$\begin{aligned} u\left( q\right) =M_{zz}\left( q\right) \sigma \left( q\right) \end{aligned}$$
(14)

The specific form of \(M_{zz}\left( q\right)\) depends on the system geometry, on the material properties, and on how the system is constrained. For layered solids, according to Ref. [24], \(M_{zz}\left( q\right)\) can be written as

$$\begin{aligned} M_{zz}\left( q\right) =-\frac{2\left( 1-\nu _{\text{l}}^{2}\right) }{E_{\text{l}}} \frac{1}{q}S\left( q\right) \end{aligned}$$
(15)

where \(S\left( q\right)\), given by Eqs. (45), is a corrective factor taking into account the system geometry and boundary conditions. Notice in the case of homogenous elastic half-space \(S\left( q\right) \rightarrow 1\).

Let us now consider the case of a layered half-space under a distribution of periodic forces with spatial periodicity \(\lambda\). Such a distribution of loads can be represented by the surface stress field

$$\begin{aligned} \delta _{\lambda }\left( x\right) =\sum _{k=-\infty }^{+\infty }\delta \left( x-\frac{2\pi }{q_{0}}k\right) \end{aligned}$$
(16)

where \(\delta \left( x\right)\) is the Dirac’s delta function, k is the wave number, and \(q_{0}=2\pi /\lambda\) is the fundamental frequency. Substituting in Eq. (13)

$$\begin{aligned} G_{\lambda }\left( x\right) =\int dx^{\prime }G\left( x-x^{\prime }\right) \delta _{\lambda }\left( x^{\prime }\right) =\sum _{k=-\infty }^{+\infty }G\left( x-\frac{2\pi }{q_{0}}k\right) \end{aligned}$$
(17)

Taking the Fourier transform of Eq. (17) gives

$$\begin{aligned} M_{\lambda }\left( q\right) =\sum _{k=-\infty }^{+\infty }\int dxe^{-iqx} G\left( x-\frac{2\pi }{q_{0}}k\right) =\sum _{r=-\infty }^{+\infty } M_{zz}\left( q\right) \delta \left( \frac{q}{q_{0}}-r\right) \end{aligned}$$
(18)

Moving back to the space domain we finally have

$$\begin{aligned} G_{\lambda }\left( x\right) =\frac{1}{\left( 2\pi \right) ^{2}}\int dqM_{\lambda }\left( q\right) e^{iqx}=\left( \frac{q_{0}}{2\pi }\right) ^{2}\sum _{r=-\infty }^{+\infty }M_{zz}\left( rq_{0}\right) e^{irq_{0}x} \end{aligned}$$
(19)

Eq. (19) shows that the periodic Green’s function \(G_{\lambda }\left( x\right)\) is a Fourier series with coefficients \(\left[ q_{0}/\left( 2\pi \right) \right] ^{2}M_{zz}\left( rq_{0}\right)\), and can be very easily calculated with the fast Fourier transform numerical technique.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Menga, N., Putignano, C., Afferrante, L. et al. The Contact Mechanics of Coated Elastic Solids: Effect of Coating Thickness and Stiffness. Tribol Lett 67, 24 (2019). https://doi.org/10.1007/s11249-019-1137-z

Download citation

Keywords

  • Coatings
  • Adhesion
  • Contact mechanics
  • Skin