Tribology Letters

, 67:24 | Cite as

The Contact Mechanics of Coated Elastic Solids: Effect of Coating Thickness and Stiffness

  • N. MengaEmail author
  • C. Putignano
  • L. Afferrante
  • G. Carbone
Original Paper


We investigate the adhesive and adhesiveless contact between a rigid regular wavy profile and an elastic substrate coated with an elastic layer. The contact stiffness is strongly influenced by the elasticity and thickness of the coating layer. Specifically, coatings more compliant than the substrate entail larger contact area, and vice versa. Under adhesive conditions, thin soft coatings may lead to complete contact, regardless of the applied load. Moreover, enhanced adhesive strength (toughness) can be achieved at the pull-off by adopting stiff (compliant) coatings. We compare our exact model with the Bec/Tonck model, which is one of the most adopted approximate model for biological tissues contact mechanics. The results show that predictions of the proposed model are in better qualitative agreement with experimental results taken from the literature.


Coatings Adhesion Contact mechanics Skin 


  1. 1.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A 295(1442), 300–319 (1966)Google Scholar
  2. 2.
    Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35, 87–111 (1975)CrossRefGoogle Scholar
  3. 3.
    Ciavarella, M., Demelio, G., Barber, J.R., Jang, Y.H.: Linear elastic contact of the Weierstrass profile. Proc. R. Soc. A 456, 387–405 (2000)CrossRefGoogle Scholar
  4. 4.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)CrossRefGoogle Scholar
  5. 5.
    Yang, C., Persson, B.N.J.: Molecular dynamics study of contact mechanics: contact area and interfacial separation from small to full contact. Phys. Rev. Lett. 100, 024303 (2008)CrossRefGoogle Scholar
  6. 6.
    Almqvist, A., Campana, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids 59, 2355–2369 (2011)CrossRefGoogle Scholar
  7. 7.
    Afferrante, L., Carbone, G., Demelio, G.: Interacting and coalescing Hertzian asperities: a new multiasperity contact model. Wear 278–279, 28–33 (2012)CrossRefGoogle Scholar
  8. 8.
    Menga, N., Putignano, C., Carbone, G., Demelio, G.P.: The sliding contact of a rigid wavy surface with a viscoelastic half-space. Proc. R. Soc. A 470(2169), 20140392 (2014)CrossRefGoogle Scholar
  9. 9.
    Menga, N., Carbone, G., Dini, D.: Do uniform tangential interfacial stresses enhance adhesion? J. Mech. Phys. Solids 112, 145–156 (2018)CrossRefGoogle Scholar
  10. 10.
    Borri-Brunetto, M., Chiaia, B., Ciavarella, M.: Incipient sliding of rough surfaces in contact: a multiscale numerical analysis. Comput. Meth. Appl. Mech. Eng. 190, 6053–6073 (2001)CrossRefGoogle Scholar
  11. 11.
    Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026117 (2004)CrossRefGoogle Scholar
  12. 12.
    Campana, C., Mueser, M.H., Robbins, M.O.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter. 20(35), 354013 (2008)CrossRefGoogle Scholar
  13. 13.
    Pastewka, L., Robbins, M.O.: Contact area of rough spheres: large scale simulations and simple scaling laws. Appl. Phys. Lett. 108(22), 221601 (2016)CrossRefGoogle Scholar
  14. 14.
    Carbone, G., Putignano, C.: A novel methodology to predict sliding and rolling friction of viscoelastic materials, theory and experiments. J. Mech. Phys. Solids 61, 1822–1834 (2013)CrossRefGoogle Scholar
  15. 15.
    Medina, S., Dini, D.: A numerical model for the deterministic analysis of adhesive rough contacts down to the nano-scale. Int. J. Solids Struct. 51(14), 2620–2632 (2014)CrossRefGoogle Scholar
  16. 16.
    Ilincic, S., Vorlaufer, G., Fotiu, P.A., Vernes, A., Franek, F.: Combined finite element-boundary element method modelling of elastic multi-asperity contacts. Proc. Inst. Mech. Eng. J 223(5), 767–776 (2009)CrossRefGoogle Scholar
  17. 17.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J. Mech. Phys. Solids. 60, 973–982 (2012)CrossRefGoogle Scholar
  18. 18.
    Nasdala, L., Kaliske, M., Becker, A., Rothert, H.: An efficient viscoelastic formulation for steady-state rolling structures. Comput. Mech. 22, 395–403 (1998)CrossRefGoogle Scholar
  19. 19.
    Afferrante, L., Ciavarella, M., Demelio, G.: Adhesive contact of the Weierstrass profile. Proc. R. Soc. A 471(2182), 20150248 (2015)CrossRefGoogle Scholar
  20. 20.
    Menga, N., Afferrante, L., Demelio, G.P., Carbone, G.: Rough contact of sliding viscoelastic layers: numerical calculations and theoretical predictions. Tribol. Int. 122, 67–75 (2018)CrossRefGoogle Scholar
  21. 21.
    Burmister, D.M.: The general theory of stresses and displacements in layered systems. I. J. Appl. Phys. 16(2), 89–94 (1945)CrossRefGoogle Scholar
  22. 22.
    Burmister, D.M.: The general theory of stresses and displacements in layered soil systems. II. J. Appl. Phys. 16, 126–127 (1945)CrossRefGoogle Scholar
  23. 23.
    Burmister, D.M.: The general theory of stresses and displacements in layered soil systems. III. J. Appl. Phys. 16(5), 296–302 (1945)CrossRefGoogle Scholar
  24. 24.
    Persson, B.N.J.: Contact mechanics for layered materials with randomly rough surfaces. J. Phys. Condens. Matter 24(9), 095008 (2012)CrossRefGoogle Scholar
  25. 25.
    Zhang, Z., Li, Z.: Analytical solutions for the layered geo-materials subjected to an arbitrary point load in the cartesian coordinate. Acta Mech. Solida Sin. 24(3), 262–272 (2011)CrossRefGoogle Scholar
  26. 26.
    Menga, N., Afferrante, L., Carbone, G.: Effect of thickness and boundary conditions on the behavior of viscoelastic layers in sliding contact with wavy profiles. J. Mech. Phys. Solids 95, 517–529 (2016)CrossRefGoogle Scholar
  27. 27.
    Menga, N., Foti, D., Carbone, G.: Viscoelastic frictional properties of rubber-layer roller bearings (RLRB) seismic isolators. Meccanica 52(11–12), 2807–2817 (2017)CrossRefGoogle Scholar
  28. 28.
    Sola, A., Bellucci, D., Cannillo, V.: Functionally graded materials for orthopedic applications-an update on design and manufacturing. Biotechnol. Adv. 34(5), 504–531 (2016)CrossRefGoogle Scholar
  29. 29.
    van Kuilenburg, J., Masen, M.A., van der Heide, E.: Contact modelling of human skin: what value to use for the modulus of elasticity? Proc. Inst. Mech. Eng. J 227(4), 349–361 (2013)CrossRefGoogle Scholar
  30. 30.
    Hurtado, M.M., Peppelman, M., Zeng, X., Van Erp, P.E.J., Van Der Heide, E.: Tribological behaviour of skin equivalents and ex-vivo human skin against the material components of artificial turf in sliding contact. Tribol. Int. 102, 103–113 (2016)CrossRefGoogle Scholar
  31. 31.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  32. 32.
    Menga, N., Afferrante, L., Carbone, G.: Adhesive and adhesiveless contact mechanics of elastic layers on slightly wavy rigid substrates. Int. J. Solids Struct. 88, 101–109 (2016)CrossRefGoogle Scholar
  33. 33.
    Bec, S., Tonck, A., Georges, J.M., Georges, E., Loubet, J.L.: Improvements in the indentation method with a surface force apparatus. Philos. Mag. A 74(5), 1061–1072 (1996)CrossRefGoogle Scholar
  34. 34.
    Bec, S., Tonck, A., Georges, J.M., Coy, R.C., Bell, J.C., Roper, G.W.: Relationship between mechanical properties and structures of zinc dithiophosphate anti-wear films. Proc. R. Soc. Lond A 455(1992), 4181–4203 (1999)CrossRefGoogle Scholar
  35. 35.
    Rar, A., Song, H., Pharr, G. M.: Assessment of new relation for the elastic compliance of a film-substrate system. In: MRS Online Proceedings Library Archive, vol. 695 (2001)Google Scholar
  36. 36.
    McGuiggan, P.M., Wallace, J.S., Smith, D.T., Sridhar, I., Zheng, Z.W., Johnson, K.L.: Contact mechanics of layered elastic materials: experiment and theory. J. Phys. D 40(19), 5984 (2007)CrossRefGoogle Scholar
  37. 37.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324(1558), 301–313 (1971)CrossRefGoogle Scholar
  38. 38.
    Carbone, G., Mangialardi, L.: Analysis of the adhesive contact of confined layers by using a Green’s function approach. J. Mech. Phys. Solids 56(2), 684–706 (2008)CrossRefGoogle Scholar
  39. 39.
    Maugis, D.: Contact Adhesion and Rupture of Elastic Solids. Springer, Berlin (2000)CrossRefGoogle Scholar
  40. 40.
    Pailler-Mattei, C., Bec, S., Zahouani, H.: In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 30(5), 599–606 (2008)CrossRefGoogle Scholar
  41. 41.
    Persson, B.N.J., Kovalev, A., Gorb, S.N.: Contact mechanics and friction on dry and wet human skin. Tribol. Lett. 50(1), 17–30 (2013)CrossRefGoogle Scholar
  42. 42.
    Kovalev, A.E., Dening, K., Persson, B.N., Gorb, S.N.: Surface topography and contact mechanics of dry and wet human skin. Beilstein J. Nanotechnol. 5, 1341 (2014)CrossRefGoogle Scholar
  43. 43.
    Koiter, W.T.: An infinite row of collinear cracks in an infinite elastic sheet. Ing. Arch. 28, 168–172 (1959)CrossRefGoogle Scholar
  44. 44.
    Sneddon, I.N.: Application of Integral Transforms in the Theory of Elasticity. CISM 220. Springer, Berlin (1975)Google Scholar
  45. 45.
    Adams, M.J., Briscoe, B.J., Johnson, S.A.: Friction and lubrication of human skin. Tribol. Lett. 26(3), 239–253 (2007)CrossRefGoogle Scholar
  46. 46.
    Renvoise, J., Burlot, D., Marin, G., Derail, C.: Adherence performances of pressure sensitive adhesives on a model viscoelastic synthetic film: a tool for the understanding of adhesion on the human skin. Int. J. Pharm. 368(1–2), 83–88 (2009)CrossRefGoogle Scholar
  47. 47.
    Pailler-Mattei, C., Zahouani, H.: Study of adhesion forces and mechanical properties of human skin in vivo. J. Adhes. Sci. Technol. 18(15–16), 1739–1758 (2004)CrossRefGoogle Scholar
  48. 48.
    Pailler-Mattei, C., Nicoli, S., Pirot, F., Vargiolu, R., Zahouani, H.: A new approach to describe the skin surface physical properties in vivo. Colloids Surf. B 68(2), 200–206 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanics, Mathematics and ManagementPolitecnico of BariBariItaly
  2. 2.Department of Mechanical EngineeringImperial College LondonLondonUK
  3. 3.Physics Department “M. Merlin”, CNR - Institute for Photonics and Nanotechnologies U.O.S. BariBariItaly

Personalised recommendations