AFM at the Macroscale: Methods to Fabricate and Calibrate Probes for Millinewton Force Measurements


The difficulty in detecting and controlling forces in the gap between the nanoscale and macroscale tribometry regimes has so far limited the application of fundamental atomic-scale insights to practical friction and wear control. This paper describes methods to achieve and quantify millinewton forces measured by atomic force microscopy (AFM) using existing experimental tools. We mounted colloidal microspheres at different points along the span of commercial AFM cantilevers to reduce their effective flexural length from 125 µm to between 21 and 107 µm. The resulting spring constants, based on direct calibration, varied from 100 to 10,000 N/m. Within a commercial AFM (Dimension 3100), these cantilevers produced normal force calibration constants between 0.006 and 0.430 mN/V; i.e., increasing the spring constant by 100 × caused a corresponding increase in the calibration constant but only a negligible increase in V/m sensitivity. We demonstrate these new capabilities by measuring friction between the colloids and single-crystal MoS2 at applied normal forces up to 3.4 mN, which is in the range of existing tribometers and well above the forces typically used in AFM-based measurements. These methods, which make use of well-established procedures and only require a modified AFM cantilever, are intended for use by other researchers as a platform for bridging the gap between nanoscale and macroscale tribometry.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Tabor, D.: The area of contact between stationary and between moving surfaces. Doctoral Dissertation. University of Cambridge: (1939)

  2. 2.

    Sawyer, W.G., Argibay, N., Burris, D.L., Krick, B.A.: Mechanistic studies in friction and wear of bulk materials. Annu. Rev. Mater. Res. 44, 395–427 (2014)

    Article  Google Scholar 

  3. 3.

    Bhushan, B.: Nanotribology and nanomechanics. Wear. 259, 1507–1531 (2005)

    CAS  Article  Google Scholar 

  4. 4.

    Bhushan, B., Israelachvili, J.N., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature. 374, 607–616 (1995)

    CAS  Article  Google Scholar 

  5. 5.

    Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy scratching the surface. Chem. Rev. 97, 1163–1194 (1997)

    CAS  Article  Google Scholar 

  6. 6.

    Mate, C.M., McClelland, G.M., Erlandsson, R., Chiang, S.: Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59, 1942–1945 (1987)

    CAS  Article  Google Scholar 

  7. 7.

    Tomlinson, G.A.: A molecular theory of friction. Lond. Edinb. Dublin Philos. Mag. J. Sci. 17, 147–56: (1929)

    Google Scholar 

  8. 8.

    Prandtl, L.: Ein Gedankenmodell zur kinetischen Theorie der festen Körper. ZAMM J. Appl. Math. Mech. 8, 85–106 (1928)

    Article  Google Scholar 

  9. 9.

    Bennewitz, R., Gnecco, E., Gyalog, T., Meyer, E.: Atomic friction studies on well-defined surfaces. Tribol. Lett. 10, 51–56 (2001)

    CAS  Article  Google Scholar 

  10. 10.

    Bennewitz, R., Gyalog, T., Guggisberg, M., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60, R11301–R11304 (1999)

    CAS  Article  Google Scholar 

  11. 11.

    Germann, G.J., Cohen, S.R., Neubauer, G., McClelland, G.M., Seki, H., Coulman, D.: Atomic scale friction of a diamond tip on diamond (100) and (111) surfaces. J. Appl. Phys. 73, 163–167 (1993)

    CAS  Article  Google Scholar 

  12. 12.

    Dienwiebel, M., Verhoeven, G.S., Pradeep, N., Frenken, J.W.M., Heimberg, J.A., Zandbergen, H.W.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004)

    Article  Google Scholar 

  13. 13.

    Park, J.Y., Ogletree, D.F., Salmeron, M., Jenks, C.J., Thiel, P.A., Brenner, J., Dubois, J.M.: Friction anisotropy: a unique and intrinsic property of decagonal quasicrystals. J. Mater. Res. 23, 1488–1493 (2008)

    CAS  Article  Google Scholar 

  14. 14.

    Dienwiebel, M., Pradeep, N., Verhoeven, G.S., Zandbergen, H.W., Frenken, J.W.M.: Model experiments of superlubricity of graphite. Surf. Sci. 576, 197–211 (2005)

    CAS  Article  Google Scholar 

  15. 15.

    Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Observation of superlubricity by scanning tunneling microscopy. Phys. Rev. Lett. 78, 1448–1451 (1997)

    CAS  Article  Google Scholar 

  16. 16.

    Brukman, M.J., Gao, G., Nemanich, R.J., Harrison, J.A.: Temperature dependence of single-asperity diamond-diamond friction elucidated using AFM and MD simulations. J. Phys. Chem. C 112, 9358–9369 (2008)

    CAS  Article  Google Scholar 

  17. 17.

    He, M., Szuchmacher Blum, A., Overney, G., Overney, R.M.: Effect of interfacial liquid structuring on the coherence length in nanolubrication. Phys. Rev. Lett. 88(15), 154302 (2002)

    Article  Google Scholar 

  18. 18.

    Schirmeisen, A., Jansen, L., Hölscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88(12), 123108 (2006)

    Article  Google Scholar 

  19. 19.

    Zhao, X., Hamilton, M., Sawyer, W.G., Perry, S.S.: Thermally activated friction. Tribol. Lett. 27, 113–117 (2007)

    CAS  Article  Google Scholar 

  20. 20.

    Gnecco, E., Bennewitz, R., Gyalog, T., Loppacher, C., Bammerlin, M., Meyer, E., Güntherodt, H.J.: Velocity dependence of atomic friction. Phys. Rev. Lett. 84, 1172–1175 (2000)

    CAS  Article  Google Scholar 

  21. 21.

    Baykara, M.Z., Vazirisereshk, M.R., Martini, A.: Emerging superlubricity: a review of the state of the art and perspectives on future research. Appl. Phys. Rev. 5, 41102 (2018)

    Article  Google Scholar 

  22. 22.

    Sokoloff, J.B.: Theory of dynamical friction between idealized sliding surfaces. Surf. Sci. 144, 267–272 (1984)

    CAS  Article  Google Scholar 

  23. 23.

    Gnecco, E., Bennewitz, R., Socoliuc, A., Meyer, E.: Friction and wear on the atomic scale. Wear. 254, 859–862 (2003)

    CAS  Article  Google Scholar 

  24. 24.

    Yoon, E.S., Singh, R.A., Oh, H.J., Kong, H.: The effect of contact area on nano/micro-scale friction. Wear. 259, 1424–1431 (2005)

    CAS  Article  Google Scholar 

  25. 25.

    Bhushan, B., Kulkarni, A.V.: Effect of normal load on microscale friction measurements. Thin Solid Films 278, 49–56 (1996)

    CAS  Article  Google Scholar 

  26. 26.

    Nikhil, S.T.: Scale dependence of micro/ nano-friction and adhesion of mems/ nems materials, coatings and lubricants. Nanotechnology. 15, 1561–1570 (2004)

    Article  Google Scholar 

  27. 27.

    Bhushan, B., Liu, H., Hsu, S.M.: Adhesion and friction studies of silicon and hydrophobic and low friction films and investigation of scale effects. J. Tribol. 126, 583 (2004)

    CAS  Article  Google Scholar 

  28. 28.

    Liu, X.-Z., Ye, Z., Dong, Y., Egberts, P., Carpick, R.W., Martini, A.: Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Phys. Rev. Lett. 114, 146102 (2015)

    Article  Google Scholar 

  29. 29.

    Khare, H.S., Lahouij, I., Jackson, A., Feng, G., Chen, Z., Cooper, G.D., Carpick, R.W.: Nanoscale generation of robust solid films from liquid-dispersed nanoparticles via in situ atomic force microscopy: growth kinetics and nanomechanical properties. ACS Appl. Mater. Interfaces. (2018)

  30. 30.

    Kappl, M., Butt, H.-J.: The colloidal probe technique and its application to adhesion force measurements. Part. Part. Syst. Charact. 19, 129–143 (2002)

    CAS  Article  Google Scholar 

  31. 31.

    Kim, M.S., Cho, J.S. et al. Atomic force microscope cantilever calibration device for quantified force metrology at micro- or nano-scale regime: the nano force calibrator (NFC). Metrologia. 43, 389 (2006)

    CAS  Article  Google Scholar 

  32. 32.

    Guide to the Expression of Uncertainty in Measurement, International Standards Organization (ISO). (1993)

  33. 33.

    Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64, 1868–1873 (1993)

    CAS  Article  Google Scholar 

  34. 34.

    Butt, H.-J., Jaschke, M.: Calculation of thermal noise in atomic force microscopy. Nanotechnology. 6, 1 (1995)

    Article  Google Scholar 

  35. 35.

    Zhao, X., Perry, S.S.: The role of water in modifying friction within MoS2 sliding interfaces. ACS Appl. Mater. Interfaces. 2, 1444–1448 (2010)

    CAS  Article  Google Scholar 

  36. 36.

    Khare, H.S., Burris, D.L.: The extended wedge method: atomic force microscope friction calibration for improved tolerance to instrument misalignments, tip offset, and blunt probes. Rev. Sci. Instrum. 84, 055108 (2013)

    CAS  Article  Google Scholar 

  37. 37.

    Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009)

    Article  Google Scholar 

  38. 38.

    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298 (1996)

    CAS  Article  Google Scholar 

  39. 39.

    Hopcroft, M.A., Nix, W.D., Kenny, T.W.: What is the young’s modulus of silicon? J. Microelectromechanical Syst. 19, 229–238 (2010)

    CAS  Article  Google Scholar 

  40. 40.

    Pitenis, A.A., Urueña, J.M., Hormel, T.T., Bhattacharjee, T., Niemi, S.R., Marshall, S.L., Hart, S.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Corneal cell friction: Survival, lubricity, tear films, and mucin production over extended duration in vitro studies. Biotribology. 11, 77–83 (2017)

    Article  Google Scholar 

  41. 41.

    Marshall, S.L., Schulze, K.D., Hart, S.M., Urueña, J.M., McGhee, E.O., Bennett, A.I., Pitenis, A.A., O’Bryan, C.S., Angelini, T.E., Sawyer, W.G.: Spherically capped membrane probes for low contact pressure tribology. Biotribology. 11, 69–72 (2017)

    Article  Google Scholar 

  42. 42.

    Bhushan, B., Nosonovsky, M.: Scale effects in friction using strain gradient plasticity and dislocation-assisted sliding (microslip). Acta Mater. 51, 4331–4345 (2003)

    CAS  Article  Google Scholar 

  43. 43.

    Kanaga Karuppiah, K.S., Bruck, A.L., Sundararajan, S.: Evaluation of friction behavior and its contact-area dependence at the micro- and nano-scales. Tribol. Lett. 36, 259 (2009)

    CAS  Article  Google Scholar 

  44. 44.

    Schulze, K.D., Bennett, A.I., Marshall, S., Rowe, K.G., Dunn, A.C.: Real area of contact in a soft transparent interface by particle exclusion microscopy. J. Tribol. 138, 41404–41406 (2016)

    Article  Google Scholar 

  45. 45.

    Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, G.W.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology 1–2, 24–29 (2015)

    Article  Google Scholar 

Download references


N.T.G and D.L.B. acknowledge financial support from NSF Grant # CMMI-1434435. R.W.C. acknowledges support from NSF Grant # CMMI-1761874.

Author information



Corresponding author

Correspondence to D. L. Burris.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Garabedian, N.T., Khare, H.S., Carpick, R.W. et al. AFM at the Macroscale: Methods to Fabricate and Calibrate Probes for Millinewton Force Measurements. Tribol Lett 67, 21 (2019).

Download citation


  • High-force AFM
  • Normal force calibration
  • AFM colloidal probes
  • AFM reference cantilevers