Tribology Letters

, 67:10 | Cite as

Analysis of Carbon Nanotube Arrays for Their Potential Use as Adhesives Under Harsh Conditions as in Space Technology

  • Christian LutzEmail author
  • Zeyu Ma
  • Richard Thelen
  • Julia Syurik
  • Oleg Il’in
  • Oleg Ageev
  • Pierre Jouanne
  • Hendrik Hölscher
Original Paper


For their potential use as dry adhesives under harsh conditions as in space, we investigated the temperature dependence of the adhesion of carbon nanotube arrays by atomic force microscopy (AFM) from \(-\,20\,^\circ \hbox {C}\) to \(+\,240\,^\circ \hbox {C}\). In order to mimic the specific conditions for space application as close as possible, we glued tiny meteoritic particles to AFM cantilevers as probes. The measurements revealed that the adhesion forces of about \(2.5\,\hbox {N/cm}^2\) are practically constant in the investigated temperature range. Long-term measurements with 1000 attachment–detachment cycles demonstrated the long-term stability of carbon nanotube arrays. The overall properties did not change after exposing the sample to simulated space condition. Additionally, we measured the adhesion between ice and carbon nanotubes at \(-\,20\,^\circ \hbox {C}\) and obtained similar results. For these measurements, we used a bundle of CNTs as probe and grow a closed ice layer as sample surface.


Adhesives Carbon nanotubes Atomic force microscopy Space technology Space tribology 



It is a pleasure to thank Amandine Charles (Thales Alenia Space) for support and helpful discussion. J.S. gratefully acknowledges funding from the Helmholtz Postdoc Programme (PD-157). This work was partly carried out with the support of the Karlsruhe Nano Micro Facility (KNMF,, a Helmholtz Research Infrastructure at Karlsruhe Institute of Technology, Germany (KIT, The growth of CNTs with PECVD was performed at the Research and Education Center “Nanotechnologies” of the Southern Federal University, Russia.


  1. 1.
    Flammang, P., Aldred, N., Santos, R., Gorb, S.: Biological and Biomimetic Adhesives: Challenges and Opportunities. RSC Publishing, Cambridge (2012)Google Scholar
  2. 2.
    Bar-Cohen, Y.: Biomimetics: Biologically Inspired Technologies. CRC Press, Boca Raton (2006)Google Scholar
  3. 3.
    Labonte, D., Federle, W.: Scaling and biomechanics of surface attachment in climbing animals. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370(1661), 20140027 (2015). CrossRefGoogle Scholar
  4. 4.
    Autumn, K., Liang, Y.A., Hsieh, S.T., Zesch, W., Chan, W.P., Kenny, T.W., Fearing, R., Full, R.J.: Adhesive force of a single gecko foot-hair. Nature 405, 681 (2000). CrossRefGoogle Scholar
  5. 5.
    Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., Full, R.J.: Evidence for van der Waals adhesion in gecko setae. PNAS 99(19), 12252 (2002). CrossRefGoogle Scholar
  6. 6.
    Arzt, E., Gorb, S., Spolenak, R.: From micro to nano contacts in biological attachment devices. PNAS 100(19), 10603 (2003). CrossRefGoogle Scholar
  7. 7.
    Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, S.Y.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2, 461 (2003). CrossRefGoogle Scholar
  8. 8.
    Jeong, H.E., Lee, J.K., Kim, H.N., Moon, S.H., Suh, K.Y.: A nontransferring dry adhesive with hierarchical polymer nanohairs. PNAS 106, 5639 (2009). CrossRefGoogle Scholar
  9. 9.
    Brodoceanu, D., Bauer, C.T., Kroner, E., Arzt, E., Kraus, T.: Hierarchical bioinspired adhesive surfaces—a review. Bioinspir. Biomim. 11(5), 1 (2016). CrossRefGoogle Scholar
  10. 10.
    Röhrig, M., Thiel, M., Worgull, M., Hölscher, H.: 3D direct laser writing of nano- and microstructured hierarchical gecko-mimicking surfaces. Small 8, 3009 (2012). CrossRefGoogle Scholar
  11. 11.
    Henrey, M., Díaz Téllez, J.P., Wormnes, K., Pambaguian, L., Menon, C.: Towards the use of mushroom-capped dry adhesives in outer space: effects of low pressure and temperature on adhesion strength. Aerosp. Sci. Technol. 29, 185 (2013). CrossRefGoogle Scholar
  12. 12.
    Reitz, G., Beaujean, R., Benton, E., Burmeister, S., Dachev, T., Deme, S., Luszik-Bhadra, M., Olko, P.: Space radiation measurements on-board ISS—the DOSMAP experiment. Radiat. Prot. Dosim. 116(1–4), 374 (2005). CrossRefGoogle Scholar
  13. 13.
    Yurdumakan, B., Raravikar, N.R., Ajayanb, P.M., Dhinojwala, A.: Synthetic gecko foot-hairs from multiwalled carbon nanotubes. Chem. Commun. 30, 3799–3801 (2005)CrossRefGoogle Scholar
  14. 14.
    Zhao, Y., Tong, T., Delzeit, L., Kashani, A., Meyyappan, M., Majumdar, A.: Interfacial energy and strength of multiwalled-carbon-nanotube-based dry adhesive. J. Vac. Sci. Technol. B: Microelectron. Nanometer Struct. 24, 331 (2006). CrossRefGoogle Scholar
  15. 15.
    Qu, L., Dai, L.: Gecko-foot-mimetic aligned single-walled carbon nanotube dry adhesives with unique electrical and thermal properties. Adv. Mater. 19, 3844 (2007). CrossRefGoogle Scholar
  16. 16.
    Chen, B., Zhong, G., Oppenheimer, P.G., Zhang, C., Tornatzky, H., Esconjauregui, S., Hofmann, S., Robertson, J.: Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics. ACS Appl. Mater. Interfaces 7, 3626 (2015). CrossRefGoogle Scholar
  17. 17.
    Hu, S., Xia, Z., Dai, L.: Advanced gecko-foot-mimetic dry adhesives based on carbon nanotubes. Nanoscale 5, 475 (2013). CrossRefGoogle Scholar
  18. 18.
    Schaber, C.F., Heinlein, T., Keeley, G., Schneider, J.J., Gorb, S.N.: Tribological properties of vertically aligned carbon nanotube arrays. Carbon 94, 396 (2015). CrossRefGoogle Scholar
  19. 19.
    Cui, Y., Ju, Y., Xu, B., Wang, P., Kojima, N., Ichioka, K.: Mimicking a gecko s foot with strong adhesive strength based on a spinnable vertically aligned carbon nanotube array. RSC Adv. 4, 9056 (2014). CrossRefGoogle Scholar
  20. 20.
    Lutz, C., Syurik, J., Shyam Kumar, C.N., Kübel, C., Bruns, M., Hölscher, H.: Dry adhesives from carbon nanofibers grown in an open ethanol flame. Beilstein J. Nanotechnol. 8, 2719 (2017). CrossRefGoogle Scholar
  21. 21.
    Thostenson, E.T., Li, C., Chou, T.W.: Nanocomposites in context. Compos. Sci. Technol. 65, 491 (2005). CrossRefGoogle Scholar
  22. 22.
    Demczyk, B.G., Wang, M., Cumingd, J., Hetamn, M., Han, W., Zettl, A., Ritchie, R.: Direct mechanical measurements of the tensile strength and elastic modulus of multi-walled carbon nanotubes. Mater. Sci. Eng. A 334, 173 (2002). CrossRefGoogle Scholar
  23. 23.
    Gerasimov, G.Y.: Radiation stability of carbon nanostructures. J. Eng. Phys. Thermophys. 83, 393 (2010). CrossRefGoogle Scholar
  24. 24.
    Gohardani, O., Elola, M.C., Elizetxea, C.: Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicles: a review of current and expected applications in aerospace sciences. Prog. Aerosp. Sci. 70, 42 (2014). CrossRefGoogle Scholar
  25. 25.
    Compton, W.D.: Where No Man has Gone Before: A History of Apollo Lunar Exploration Mission. The NASA History Series (1989)Google Scholar
  26. 26.
    Crisp, J., Adler, M., Matijevic, J., Squyres, S., Arvidson, R., Kass, D.: Mars exploration rover mission. Geophys. Res. 108, 8061 (2003). CrossRefGoogle Scholar
  27. 27.
    Grotzinger, J.P., Crisp, J., Vasavada, A.R., Anderson, R.C., Baker, C.J., Barry, R., Blake, D.F., Conrad, P., Edgett, K.S., Ferdowski, B., Gellert, R., Gilbert, J.B., Golombek, M., Gómez-Elvira, J., Hassler, D.M., Jandura, L., Litvak, M., Mahaffy, P., Maki, J., Meyer, M., Malin, M.C., Mitrofanov, I., Simmonds, J.J., Vaniman, D., Welch, R.V., Wiens, R.C.: Mars Science Laboratory mission and science investigation. Space Sci. Rev. 170, 5 (2012). CrossRefGoogle Scholar
  28. 28.
    Hirt, C., Featherstone, W.E.: A 1.5 km-resolution gravity field model of the Moon. Earth Planet. Sci. Lett. 329–330, 22 (2012). CrossRefGoogle Scholar
  29. 29.
    Wrobel, K.E., Schultz, P.H.: Effect of planetary rotation on distal tektite deposition on Mars. J. Geophys. Res. E: Planets 109, 1 (2004). CrossRefGoogle Scholar
  30. 30.
    Glassmeier, K.H., Boehnhardt, H., Koschny, D., Kührt, E., Richter, I.: The Rosetta mission: flying towards the origin of the solar system. Space Sci. Rev. 128, 1 (2007). CrossRefGoogle Scholar
  31. 31.
    Biele, J., Ulamec, S., Richter, L., Knollenberg, J., Kührt, E., Möhlmann, D.: The putative mechanical strength of comet surface material applied to landing on a comet. Acta Astronaut. 65, 1168 (2009). CrossRefGoogle Scholar
  32. 32.
    Ulamec, S., Biele, J.: Surface elements and landing strategies for small bodies missions—Philae and beyond. Adv. Space Res. 44, 847 (2009). CrossRefGoogle Scholar
  33. 33.
    Biele, J., Ulamec, S., Maibaum, M., Roll, R., Witte, L., Jurado, E., Muñoz, P., Arnold, W., Auster, Hu, Casas, C., Faber, C., Fantinati, C., Finke, F., Fischer, Hh, Geurts, K., Güttler, C., Heinisch, P., Herique, A., Hviid, S., Kargl, G., Knapmeyer, M., Knollenberg, J., Kofman, W., Kömle, N., Kührt, E., Lommatsch, V., Mottola, S., Santayana, R.P.D., Remetean, E., Scholten, F., Seidensticker, K.J., Sierks, H., Spohn, T.: The landing(s) of Philae and inferences about comet surface mechanical properties. Science 349(6247), 1 (2015)CrossRefGoogle Scholar
  34. 34.
    Ageev, O.A., Ilin, O.I., Kolomiytsev, A.S., Rubashkina, M.V., Smirnov, V.A., Fedotov, A.A.: Investigation of effect of geometrical parameters of vertically aligned carbon nanotubes on their mechanical properties. Adv. Mater. Res. 894, 355 (2014). CrossRefGoogle Scholar
  35. 35.
    Schirmeisen, A., Jansen, L., Hölscher, H., Fuchs, H.: Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88(12), 3 (2006). CrossRefGoogle Scholar
  36. 36.
    Greiner, C., Felts, J.R., Dai, Z., King, W.: Temperature dependence of nanoscale friction investigated with thermal AFM probes. Mater. Res. Soc. Symp. Proc. 1226(11), 1226 (2009). CrossRefGoogle Scholar
  37. 37.
    Dunckle, C.G., Altfeder, I.B., Voevodin, A.A., Jones, J., Krim, J., Taborek, P.: Temperature dependence of single-asperity friction for a diamond on diamondlike carbon interface. J. Appl. Phys. 107(11), 1 (2010). CrossRefGoogle Scholar
  38. 38.
    Jansen, L., Hölscher, H., Fuchs, H., Schirmeisen, A.: Temperature dependence of atomic-scale stick-slip friction. Phys. Rev. Lett. 104(25), 1 (2010). CrossRefGoogle Scholar
  39. 39.
    Wood, D., Hancox, I., Jones, T.S., Wilson, N.R.: Quantitative nanoscale mapping with temperature dependence of the mechanical and electrical properties of poly(3-hexylthiophene) by conductive atomic force microscopy. J. Phys. Chem. C 119(21), 11459 (2015). CrossRefGoogle Scholar
  40. 40.
    Kang, H., Qian, X., Guan, L., Zhang, M., Li, Q., Wu, A., Dong, M.: Studying the adhesion force and glass transition of thin polystyrene films by atomic force microscopy. Nanoscale Res. Lett. 13, 1 (2018). CrossRefGoogle Scholar
  41. 41.
    Hutter, J.L., Bechhoefer, J.: Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 64(7), 1868 (1993). CrossRefGoogle Scholar
  42. 42.
    Mak, L.H., Knoll, M., Weiner, D., Gorschlüter, A., Schirmeisen, A., Fuchs, H.: Reproducible attachment of micrometer sized particles to atomic force microscopy cantilevers. Rev. Sci. Instrum. (2006).
  43. 43.
    Ruzicka, A., Grossman, J.N., Garvie, L.: The meteoritical bulletin, No. 100, 2014 June. Meteoritics Planet. Sci. 49, E1 (2014). CrossRefGoogle Scholar
  44. 44.
    Connolly, H.C., Smith, C., Benedix, G., Folco, L., Righter, K., Zipfel, J., Yamaguchi, A., Aoudjehane, H.C.: The meteoritical bulletin, No. 93, 2008 March. Meteoritics Planet. Sci. 43, 571 (2008). CrossRefGoogle Scholar
  45. 45.
    Galimov, E.M., Kolotov, V.P., Nazarov, M.A., Kostitsyn, Ya., Kubrakova, I.V., Kononkova, N.N., Roshchina, I.A., Alexeev, V.A., Kashkarov, L.L., Badyukov, D.D., Sevast’yanov, V.S.: Analytical results for the material of the Chelyabinsk meteorite. Geochem. Int. 51, 522 (2013). CrossRefGoogle Scholar
  46. 46.
    Cleveland, J.P., Manne, S., Bocek, D., Hansma, P.K.: A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64, 403 (1993). CrossRefGoogle Scholar
  47. 47.
    Babu, D.J., Mail, M., Barthlott, W., Schneider, J.J.: Superhydrophobic vertically aligned carbon nanotubes for biomimetic air retention under water (Salvinia effect). Adv. Mater. Interfaces 4(13), 1700273 (2017)CrossRefGoogle Scholar
  48. 48.
    Dudko, O.K., Filippov, A.E., Klafter, J., Urbakh, M.: Beyond the conventional description of dynamic force spectroscopy of adhesion bonds. PNAS 100, 11378 (2003)CrossRefGoogle Scholar
  49. 49.
    Mumma, M.J., Charnley, S.B.: The chemical composition of cometsemerging taxonomies and natal heritage. Annu. Rev. Astron. Astrophys. 49, 471 (2011). CrossRefGoogle Scholar
  50. 50.
    Van Allen, J.A., Frank, L.A.: Radiation around the earth to a radial distance of 107,400 km. Nature 183, 430 (1959)CrossRefGoogle Scholar
  51. 51.
    Roberts, J.A., Komesaroff, M.M.: Evidence for asymmetry of Jupiter’s Van Allen Belt. Nature 203, 827 (1964)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Microstructure TechnologyKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Institute of Nanotechnologies, Electronics, and Electronic Equipment EngineeringSouthern Federal UniversityTaganrogRussia
  3. 3.Thales Alenia SpaceCannesFrance

Personalised recommendations