Advertisement

Tribology Letters

, 66:154 | Cite as

An In Situ Method for Simultaneous Friction Measurements and Imaging of Interfacial Tribochemical Film Growth in Lubricated Contacts

  • N. N. Gosvami
  • J. Ma
  • R. W. Carpick
Original Paper
  • 91 Downloads

Abstract

Tribological investigations of macroscopic lubricated sliding contacts are critical for a wide range of industrial applications including automotive engines, gears, bearings, and any other contacting surfaces in relative motion. However, the inability of existing techniques to access buried sliding interfaces with high spatial resolution inhibits the development of fundamental insights into the tribological processes at play. Here we demonstrate a novel and general in situ method, based on atomic force microscopy (AFM), in which micrometer-scale spherical probes are attached to a standard microfabricated AFM cantilever which is then slid over a substrate while immersed in a liquid lubricant. In this case, steel colloidal probes and steel substrates were used, and the contact was immersed in a commercial polyalphaolefin oil with zinc dialkyl dithiophosphate (ZDDP) additive at both room temperature and 100 °C, but the method can be used for a broad range of material combinations, lubricants, and temperatures. We demonstrate that the in situ measurements of friction force and the morphological evolution of the tribochemical films on the substrate can be simultaneously achieved with nanometer-level spatial resolution. In addition, we demonstrate that the sliding zone is readily accessible for further characterization with higher spatial resolution using standard AFM probes with nanometer-scale tip radii. Ex situ characterization of the micrometer-scale probe and the sample is also feasible, which is demonstrated by acquiring high-resolution AFM topographic imaging of the final state of the probe.

Keywords

Tribochemical films Lubricated contacts Antiwear additives Zinc dialkyl dithiophosphate Atomic force microscopy 

Notes

Acknowledgements

This work was supported by the National Science Foundation under grants CMMI-1200019 and CMMI-1728360, and the University of Pennsylvania through the School of Engineering and Applied Sciences, and the Vagelos Integrated Program in Energy Research (VIPER). The authors acknowledge the use of University of Pennsylvania Nano/Bio Interface Center Facilities and the Nanoscale Characterization Facility in the Singh Center for Nanotechnology. We thank Mr. Qizhan Tam for MATLAB analysis. The authors gratefully acknowledge helpful discussions with Prof. Andrew Jackson.

Supplementary material

Supplementary material 1 (MP4 5875 KB)

11249_2018_1112_MOESM2_ESM.docx (204 kb)
Supplementary material 2 (DOCX 204 KB)

References

  1. 1.
    Jones, M.H., Scott, D.: Industrial Tribology: The Practical Aspects of Friction, Lubrication and Wear. Elsevier, Amsterdam (1983)Google Scholar
  2. 2.
    Carpick, R.W., Jackson, A., Sawyer, W.G., Argibay, N., Lee, P., Garcia, A.P., et al.: Tribology Opportunities for Enhancing America’s Energy Efficiency: A Report to the Advanced. Research Projects Agency-Energy at the U.S. Department of Energy, Place (2017)Google Scholar
  3. 3.
    McQueen, J., Gao, H., Black, E., Gangopadhyay, A., Jensen, R.: Friction and wear of tribofilms formed by zinc dialkyl dithiophosphate antiwear additive in low viscosity engine oils. Tribol. Int. 38, 289–297 (2005)CrossRefGoogle Scholar
  4. 4.
    Taylor, L., Dratva, A., Spikes, H.: Friction and wear behavior of zinc dialkyldithiophosphate additive. Tribol. Trans. 43, 469–479 (2000)CrossRefGoogle Scholar
  5. 5.
    Fujita, H., Spikes, H. The formation of zinc dithiophosphate antiwear films. Proc. Inst. Mech. Eng.: Part J. J. Eng. Tribol. 218:265–278 (2004)CrossRefGoogle Scholar
  6. 6.
    Ovcharenko, A., Halperin, G., Etsion, I., Varenberg, M. : A novel test rig for in situ and real time optical measurement of the contact area evolution during pre-sliding of a spherical contact. Tribol. Lett. 23, 55–63 (2006)CrossRefGoogle Scholar
  7. 7.
    Krick, B.A., Vail, J.R., Persson, B.N., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 45, 185–194 (2012)CrossRefGoogle Scholar
  8. 8.
    Sheasby, J., Caughlin, T., Habeeb, J.: Observation of the antiwear activity of zinc dialkyldithiophosphate additives. Wear 150, 247–257 (1991)CrossRefGoogle Scholar
  9. 9.
    Benedet, J., Green, J.H., Lamb, G.D., Spikes, H.A.: Spurious mild wear measurement using white light interference microscopy in the presence of antiwear films. Tribol. Trans. 52, 841–846 (2009)CrossRefGoogle Scholar
  10. 10.
    Sawyer, W.G., Wahl, K.J.: Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33, 1145–1150 (2008)CrossRefGoogle Scholar
  11. 11.
    Cheong, C.U.A., Stair, P.C.: In situ studies of the lubricant chemistry and frictional properties of perfluoropolyalkyl ethers at a sliding contact. Tribol. Lett. 10, 117–126 (2001)CrossRefGoogle Scholar
  12. 12.
    Scharf, T., Singer, I.: Monitoring transfer films and friction instabilities with in situ Raman tribometry. Tribol. Lett. 14, 3–8 (2003)CrossRefGoogle Scholar
  13. 13.
    Mangolini, F., Rossi, A., Spencer, N.D.: In situ attenuated total reflection (ATR/FT-IR) tribometry: a powerful tool for investigating tribochemistry at the lubricant–substrate interface. Tribol. Lett. 45, 207–218 (2012)CrossRefGoogle Scholar
  14. 14.
    Bae, S.C., Wong, J.S., Kim, M., Jiang, S., Hong, L., Granick, S.: Using light to study boundary lubrication: spectroscopic study of confined fluids. Philos. Trans. Royal Soc. of Lond. A: Math., Phys. Eng. Sci. 366, 1443–1454 (2008)CrossRefGoogle Scholar
  15. 15.
    Krick, B.A., Hahn, D.W., Sawyer, W.G.: Plasmonic diagnostics for tribology: in situ observations using surface plasmon resonance in combination with surface-enhanced Raman spectroscopy. Tribol. Lett. 49, 95–102 (2013)CrossRefGoogle Scholar
  16. 16.
    Rowe, K.G., Bennett, A.I., Krick, B.A., Sawyer, W.G.: In situ thermal measurements of sliding contacts. Tribol. Int. 62, 208–214 (2013)CrossRefGoogle Scholar
  17. 17.
    Murarash, B., Varenberg, M.: Tribometer for in situ scanning electron microscopy of microstructured contacts. Tribol. Lett. 41, 319–323 (2011)CrossRefGoogle Scholar
  18. 18.
    Marks, L.D., Warren, O.L., Minor, A.M., Merkle, A.P.: Tribology in full view. MRS Bull. 33, 1168–1173 (2008)CrossRefGoogle Scholar
  19. 19.
    Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97, 1163–1194 (1997)CrossRefGoogle Scholar
  20. 20.
    Lantz, M., O’shea, S., Welland, M.: Simultaneous force and conduction measurements in atomic force microscopy. Phys. Rev. B 56, 15345 (1997)CrossRefGoogle Scholar
  21. 21.
    Li, Q., Kim, K.-S. Micromechanics of friction: effects of nanometre-scale roughness. Proc. Royal Soc. A: Math., Phys. Eng. Sci. 464:1319–1343 (2008)CrossRefGoogle Scholar
  22. 22.
    Gebbie, M.A., Smith, A.M., Dobbs, H.A., Warr, G.G., Banquy, X., Valtiner, M., et al.: Long range electrostatic forces in ionic liquids. Chem. Commun. 53, 1214–1224 (2017)CrossRefGoogle Scholar
  23. 23.
    Green, C.P., Lioe, H., Cleveland, J.P., Proksch, R., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75, 1988–1996 (2004)CrossRefGoogle Scholar
  24. 24.
    Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)CrossRefGoogle Scholar
  25. 25.
    Florin, E.L., Radmacher, M., Fleck, B., Gaub, H.E.: Atomic force microscope with magnetic force modulation. Rev. Sci. Instrum. 65, 639–643 (1994)CrossRefGoogle Scholar
  26. 26.
    Sader, J.E., Larson, I., Mulvaney, P., White, L.R.: Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66, 3789–3798 (1995)CrossRefGoogle Scholar
  27. 27.
    Cain, R.G., Biggs, S., Page, N.W.: Force calibration in lateral force microscopy. J. Colloid Interface Sci. 227, 55–65 (2000)CrossRefGoogle Scholar
  28. 28.
    Chung, K.-H., Pratt, J.R., Reitsma, M.G.: Lateral force calibration: accurate procedures for colloidal probe friction measurements in atomic force microscopy. Langmuir 26, 1386–1394 (2009)CrossRefGoogle Scholar
  29. 29.
    Horcas, I., Fernández, R., Gomez-Rodriguez, J., Colchero, J., Gómez-Herrero, J., Baro, A.: WSXM: a software for scanning probe microscopy and a tool for nanotechnology. Rev. Sci. Instrum. 78, 013705 (2007)CrossRefGoogle Scholar
  30. 30.
    Mindlin, R.: Compliance of elastic bodies in contact. J. Appl. Mech. Trans. ASME 16, 259–268 (1949)Google Scholar
  31. 31.
    Mazeran, P.-E., Loubet, J.-L.: Normal and lateral modulation with a scanning force microscope, an analysis: implication in quantitative elastic and friction imaging. Tribol. Lett. 7, 199–212 (1999)CrossRefGoogle Scholar
  32. 32.
    Carpick, R.W., Ogletree, D., Salmeron, M.: Lateral stiffness: a new nanomechanical measurement for the determination of shear strengths with friction force microscopy. Appl. Phys. Lett. 70, 1548–1550 (1997)CrossRefGoogle Scholar
  33. 33.
    Gao, H., McQueen, J., Black, E., Gangopadhyay, A., Jensen, R.: Reduced phosphorus concentration effects on tribological performance of passenger car engine oils. Tribol. Trans. 47, 200–207 (2004)CrossRefGoogle Scholar
  34. 34.
    Miklozic, K.T., Forbus, T.R., Spikes, H.A.: Performance of friction modifiers on ZDDP-generated surfaces. Tribol. Trans. 50, 328–335 (2007)CrossRefGoogle Scholar
  35. 35.
    Gosvami, N., Bares, J., Mangolini, F., Konicek, A., Yablon, D., Carpick, R.: Mechanisms of antiwear tribofilm growth revealed in situ by single-asperity sliding contacts. Science 348, 102–106 (2015)CrossRefGoogle Scholar
  36. 36.
    Kim, B., Mourhatch, R., Aswath, P.B.: Properties of tribofilms formed with ashless dithiophosphate and zinc dialkyl dithiophosphate under extreme pressure conditions. Wear 268, 579–591 (2010)CrossRefGoogle Scholar
  37. 37.
    Fujita, H., Glovnea, R., Spikes, H.: Study of zinc dialkydithiophosphate antiwear film formation and removal processes, part I: Experimental. Tribol. Trans. 48, 558–566 (2005)CrossRefGoogle Scholar
  38. 38.
    Bec, S., Tonck, A., Georges, J.-M., Coy, R., Bell, J., Roper, G.: Relationship between mechanical properties and structures of zinc dithiophosphate anti–wear films. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, pp. 4181–4203. The Royal Society, Place The Royal Society (1999)Google Scholar
  39. 39.
    Khare, H.S., Gosvami, N.N., Lahouij, I., Milne, Z.B., McClimon, J.B., Carpick, R.W.: Nanotribological Printing: A Nanoscale Additive Manufacturing Method. Submitted (2018)Google Scholar
  40. 40.
    Bosse, J.L., Lee, S., Andersen, A.S., Sutherland, D.S., Huey, B.D.: High speed friction microscopy and nanoscale friction coefficient mapping. Meas. Sci. Technol. 25, 115401 (2014)CrossRefGoogle Scholar
  41. 41.
    Ren, J., Zou, Q.: High-speed adaptive contact-mode atomic force microscopy imaging with near-minimum-force. Rev. Sci. Instrum. 85, 073706 (2014)CrossRefGoogle Scholar
  42. 42.
    Ren, J., Zou, Q., Li, B., Lin, Z.: High-speed atomic force microscope imaging: adaptive multiloop mode. Phys. Rev. E 90, 012405 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Materials Science and EngineeringIndian Institute of Technology DelhiNew DelhiIndia
  4. 4.W. L. Gore and AssociatesElktonUSA

Personalised recommendations