The Effect of Lubricant Composition on White Etching Crack Failures

Abstract

White etching cracks (WECs) are the dominant mode of failure for wind turbine gearbox bearings. These failures are characterized by subsurface initiation and local region of microstructural alterations adjacent to the crack faces. The definitive cause of WECs within the field is unknown, because of this laboratory replication has proved difficult. At a benchtop scale, specific lubricant formulations referred to as “bad reference oils” (BROs) are often employed to aid in the formation of WECs; however, exactly how these lubricants induce WECs is unknown. The present work intends to elucidate how these lubricants facilitate the formation of WECs by systematically varying the additives which are found in BROs and studying the effect that these additive combinations have on time until failure, as well as tribofilm development. It was found that the lubricant containing Zinc dialkyldithiophosphate alone led to the formation of WECs sooner than any lubricant studied. It was also documented that a lubricants frictional characteristics play a more dominant role than the tribofilm characteristics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Kotzalas, M.N., Doll, G.L.: Tribological advancements for reliable wind turbine performance. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 368, 4829–4850 (2010)

    Article  Google Scholar 

  2. 2.

    Musial, W., Butterfield, S., McNiff, B.: Improving wind turbine gearbox reliability. In: European Wind Energy Conference, Milan, Italy. pp. 7–10 (2007)

  3. 3.

    Greco, A., Sheng, S., Keller, J., Erdemir, A.: Material wear and fatigue in wind turbine systems. Wear. 302, 1583–1591 (2013)

    CAS  Article  Google Scholar 

  4. 4.

    Gould, B., Greco, A., Stadler, K., Xiao, X.: An analysis of premature cracking associated with microstructural alterations in an AISI 52100 failed wind turbine bearing using X-ray tomography. Mater. Des. 117, 417–429 (2017). https://doi.org/10.1016/j.matdes.2016.12.089

    CAS  Article  Google Scholar 

  5. 5.

    Gould, B., Greco, A., Stadler, K., Vegter, E., Xiao, X.: Using advanced tomography techniques to investigate the development of White Etching Cracks in a prematurely failed field bearing. Tribol. Int. (2017). https://doi.org/10.1016/j.triboint.2017.07.028

    Article  Google Scholar 

  6. 6.

    Singh, H., Pulikollu, R.V., Hawkins, W., Smith, G.: Investigation of Microstructural Alterations in Low-and High-Speed Intermediate-Stage Wind Turbine Gearbox Bearings. Tribol Lett (2017). https://doi.org/10.1007/s11249-017-0861-5

  7. 7.

    Kang, J.-H., Hosseinkhani, B., Williams, C.A., Moody, M.P., Bagot, P.A.J., Rivera-Díaz-del-Castillo, P.E.J.: Solute redistribution in the nanocrystalline structure formed in bearing steels. Scr. Mater. 69, 630–633 (2013)

    CAS  Article  Google Scholar 

  8. 8.

    Šmeļova, V., Schwedt, A., Wang, L., Holweger, W., Mayer, J.: Electron microscopy investigations of microstructural alterations due to classical rolling contact fatigue (RCF) in martensitic AISI 52100 bearing steel. Int. J. Fatigue 98, 142–154 (2017). https://doi.org/10.1016/j.ijfatigue.2017.01.035

    CAS  Article  Google Scholar 

  9. 9.

    Šmeļova, V., Schwedt, A., Wang, L., Holweger, W., Mayer, J.: Microstructural changes in white etching cracks (WECs) and their relationship with those in dark etching region (DER) and White Etching Bands (WEBs) due to rolling contact fatigue (RCF). Int. J. Fatigue. 100(Part 1), 148–158 (2017). https://doi.org/10.1016/j.ijfatigue.2017.03.027

    CAS  Article  Google Scholar 

  10. 10.

    Su, Y.-S., Yu, S.-R., Li, S.-X., He, Y.-N.: Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue. Front. Mech. Eng. (2017). https://doi.org/10.1007/s11465-018-0474-1

    Article  Google Scholar 

  11. 11.

    Su, Y.-S., Li, S.-X., Lu, S.-Y., Shu, X.-D.: Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue. Int. J. Fatigue. 105, 160–168 (2017). https://doi.org/10.1016/j.ijfatigue.2017.08.022

    CAS  Article  Google Scholar 

  12. 12.

    Mikami, H., Kawamura, T.: Influence of Electrical Current on Bearing Flaking Life. SAE Technical Paper. (2007)

  13. 13.

    Tamada, K., Tanaka, H.: Occurrence of brittle flaking on bearings used for automotive electrical instruments and auxiliary devices. Wear. 199, 245–252 (1996)

    CAS  Article  Google Scholar 

  14. 14.

    Kino, N., Otani, K.: The influence of hydrogen on rolling contact fatigue life and its improvement. JSAE Rev. 24, 289–294 (2003)

    CAS  Article  Google Scholar 

  15. 15.

    Evans, M.-H.: An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater. Sci. Technol. 1–37 (2016)

  16. 16.

    Evans, M.H.: White structure flaking (WSF) in wind turbine gearbox bearings: effects of ‘butterflies’ and white etching cracks (WECs). Mater. Sci. Technol. 28, 3–22 (2012)

    CAS  Article  Google Scholar 

  17. 17.

    Grabulov, A., Petrov, R., Zandbergen, H.W.: EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under rolling contact fatigue (RCF). Int. J. Fatigue 32, 576–583 (2010)

    CAS  Article  Google Scholar 

  18. 18.

    Grabulov, A., Ziese, U., Zandbergen, H.W.: TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam. Scr. Mater. 57, 635–638 (2007)

    CAS  Article  Google Scholar 

  19. 19.

    Martin, J.A., Borgese, S.F., Eberhardt, A.D.: Microstructural alterations of rolling—bearing steel undergoing cyclic stressing. J. Fluids Eng. 88, 555–565 (1966)

    Google Scholar 

  20. 20.

    O’Brien, J.L., King, A.H.: Electron microscopy of stress-induced structural alterations near inclusions in bearing steels. J. Fluids Eng. 88, 568–571 (1966)

    Google Scholar 

  21. 21.

    Lund, T.B., Beswick, J., Dean, S.W.: Sub-surface initiated rolling contact fatigue—influence of non-metallic inclusions, processing history, and operating conditions. J. ASTM Int. 7, 102559 (2010). https://doi.org/10.1520/JAI102559

    Article  Google Scholar 

  22. 22.

    Scott, D., Loy, B., Mills, G.H.: Paper 10: metallurgical aspects of rolling contact fatigue. In: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. pp. 94–103. SAGE Publications. (1966)

  23. 23.

    Stadler, K., Lai, J., Vegter, R.: A review: the dilemma with premature white etching crack (WEC) bearing failures. In: Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings. ASTM International, (2015)

  24. 24.

    Luyckx, J.: Hammering Wear Impact Fatigue Hypothesis WEC/irWEA Failure Mode on Roller Bearings. Wind Turbine Tribology Seminar, Broomfield (2011)

    Google Scholar 

  25. 25.

    Hyde, S.: White Etch Areas: Metallurgical Characterization & Atomistic Modeling. Wind Turbine Tribology Seminar, Argonne (2014)

    Google Scholar 

  26. 26.

    Solano-Alvarez, W., Bhadeshia, H.: White-etching matter in bearing steel. Part II: distinguishing cause and effect in bearing steel failure. Metall. Mater. Trans. A 45, 4916–4931 (2014)

    CAS  Article  Google Scholar 

  27. 27.

    Bhadeshia, H.: Steels for bearings. Prog. Mater Sci. 57, 268–435 (2012)

    CAS  Article  Google Scholar 

  28. 28.

    Evans, M.-H., Richardson, A.D., Wang, L., Wood, R.J.K.: Serial sectioning investigation of butterfly and white etching crack (WEC) formation in wind turbine gearbox bearings. Wear. 302, 1573–1582 (2013)

    CAS  Article  Google Scholar 

  29. 29.

    Bruce, T., Rounding, E., Long, H., Dwyer-Joyce, R.S.: Characterisation of white etching crack damage in wind turbine gearbox bearings. Wear. 338, 164–177 (2015)

    Article  Google Scholar 

  30. 30.

    Gould, B., Greco, A.: Investigating the process of white etching crack initiation in bearing steel. Tribol. Lett. 62, 1–14 (2016)

    Article  Google Scholar 

  31. 31.

    Manieri, F., Stadler, K., Morales-Espejel, G.E., Kadiric, A.: The origins of white etching cracks and their significance to rolling bearing failures. Int J Fatigue 120, 107–133 (2019)

    CAS  Article  Google Scholar 

  32. 32.

    Errichello, R., Sheng, S., Keller, J., Greco, A.: Wind Trubine Tribology: A Recap. In: U.S. Department of Energy, EERE Wind and Water Power Program

  33. 33.

    Holweger, W.: Progresses in solving white etching crack phenoma. NREL-Gearbox Reliability Collaborative, Golden, CO, p. 45 (2014)

    Google Scholar 

  34. 34.

    Strandell, I., Fajers, C., Lund, T.: Corrosion—one root cause for premature failures. In: 37th Leeds-Lyon Symposium on Tribology, (2010)

  35. 35.

    Loos, J., Bergmann, I., Goss, M.: Influence of currents from electrostatic charges on WEC formation in rolling bearings. Tribol. Trans. 59, 865–875 (2016). https://doi.org/10.1080/10402004.2015.1118582

    CAS  Article  Google Scholar 

  36. 36.

    Gegner, J.: Tribological Aspects of Rolling Bearing Failures. INTECH Open Access Publisher, Rijeka (2011)

    Google Scholar 

  37. 37.

    Gould, B.J., Burris, D.L.: Effects of wind shear on wind turbine rotor loads and planetary bearing reliability. Wind Energy. 19, 1011–1021 (2015). https://doi.org/10.1002/we.1879

    Article  Google Scholar 

  38. 38.

    Garabedian, N., Gould, B., Doll, G., Burris, D.: Wear and fatigue as contributors to the premature failure of wind turbine planet bearings—under-loading or over-loading? Tribol. Trans. (2018). https://doi.org/10.1080/10402004.2018.1433345

    Article  Google Scholar 

  39. 39.

    Keller, J.: Investigating main and high-speed shaft bearing reliability through uptower testing. In: 2018 Drivetrain Reliability Collaborative Annual Meeting, Golden, CO. (2018)

  40. 40.

    Iso, K., Yokouchi, A., Takemura, H.: Research work for clarifying the mechanism of white structure flaking and extending the life of bearings. SAE Technical Paper (2005)

  41. 41.

    Vegter, R.H., Slycke, J.T.: The role of hydrogen on rolling contact fatigue response of rolling element bearings. J. ASTM Int. 7, 1–12 (2009)

    Google Scholar 

  42. 42.

    Uyama, H., Yamada, H., Hidaka, H., Mitamura, N.: The effects of hydrogen on microstructural change and surface originated flaking in rolling contact fatigue. Tribol. Online 6, 123–132 (2011)

    Article  Google Scholar 

  43. 43.

    Hiraoka, K., Fujimatsu, T., Tsunekage, N., Yamamoto, A.: Generation process observation of micro-structural change in rolling contact fatigue by hydrogen-charged specimens. J. Jpn. Soc. Tribol. 52, 888–895 (2007)

    CAS  Google Scholar 

  44. 44.

    Ciruna, J.A., Szieleit, H.J.: The effect of hydrogen on the rolling contact fatigue life of AISI 52100 and 440C steel balls. Wear. 24, 107–118 (1973)

    CAS  Article  Google Scholar 

  45. 45.

    Grunberg, L.: The formation of hydrogen peroxide on fresh metal surfaces. Proc. Phys. Soc. B. 66, 153 (1953)

    Article  Google Scholar 

  46. 46.

    Imran, T., Jacobson, B., Shariff, A.: Quantifying diffused hydrogen in AISI-52100 bearing steel and in silver steel under tribo-mechanical action: Pure rotating bending, sliding–rotating bending, rolling–rotating bending and uni-axial tensile loading. Wear. 261, 86–95 (2006)

    CAS  Article  Google Scholar 

  47. 47.

    Ray, D., Vincent, L., Coquillet, B., Guirandenq, P., Chene, J., Aucouturier, M.: Hydrogen embrittlement of a stainless ball bearing steel. Wear 65, 103–111 (1980)

    CAS  Article  Google Scholar 

  48. 48.

    Matsubara, Y., Hamada, H.: A novel method to evaluate the influence of hydrogen on fatigue properties of high strength steels. J. ASTM Int. 3, 1–14 (2006)

    Article  Google Scholar 

  49. 49.

    Lü, H., Li, M., Zhang, T., Chu, W.: Hydrogen-enhanced dislocation emission, motion and nucleation of hydrogen-induced cracking for steel. Sci. China Ser. E 40, 530–538 (1997)

    Article  Google Scholar 

  50. 50.

    Fujita, S., Matsuoka, S., Murakami, Y., Marquis, G.: Effect of hydrogen on mode II fatigue crack behavior of tempered bearing steel and microstructural changes. Int. J. Fatigue 32, 943–951 (2010)

    CAS  Article  Google Scholar 

  51. 51.

    Evans, M.-H., Richardson, A.D., Wang, L., Wood, R.J.K.: Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear. 306, 226–241 (2013)

    CAS  Article  Google Scholar 

  52. 52.

    Ruellan, A., Ville, F., Kleber, X., Arnaudon, A., Girodin, D.: Understanding white etching cracks in rolling element bearings: the effect of hydrogen charging on the formation mechanisms. Proc. Inst. Mech. Eng. J. 228, 1252–1265 (2014)

    Google Scholar 

  53. 53.

    Evans, M.-H., Wang, L., Jones, H., Wood, R.J.K.: White etching crack (WEC) investigation by serial sectioning, focused ion beam and 3-D crack modelling. Tribol. Int. 65, 146–160 (2013)

    CAS  Article  Google Scholar 

  54. 54.

    Paladugu, M., Scott Hyde, R.: White etching matter promoted by intergranular embrittlement. Scr. Mater. 130, 219–222 (2017). https://doi.org/10.1016/j.scriptamat.2016.11.030

    CAS  Article  Google Scholar 

  55. 55.

    Paladugu, M., Hyde, S.: Microstructure deformation and white etching matter formation along cracks. Wear 390–391, 367–375 (2017)

    Article  Google Scholar 

  56. 56.

    Gould, B., Greco, A.: The influence of sliding and contact severity on the generation of white etching cracks. Tribol. Lett. 60, 1–13 (2015)

    Article  Google Scholar 

  57. 57.

    Li, S.-X., Su, Y.-S., Shu, X.-D., Chen, J.-J.: Microstructural evolution in bearing steel under rolling contact fatigue. Wear. 380–381, 146–153 (2017). https://doi.org/10.1016/j.wear.2017.03.018

    CAS  Article  Google Scholar 

  58. 58.

    Bruce, T., Long, H., Slatter, T., Dwyer-Joyce, R.s.: Formation of white etching cracks at manganese sulfide (MnS) inclusions in bearing steel due to hammering impact loading. Wind Energy. 19, 1903–1915 (2016). https://doi.org/10.1002/we.1958

    Article  Google Scholar 

  59. 59.

    Bruce, T., Long, H., Dwyer-Joyce, R.S.: Threshold maps for inclusion-initiated micro-cracks and white etching areas in bearing steel: the role of impact loading and surface sliding. Tribol. Lett. 66, (2018). https://doi.org/10.1007/s11249-018-1068-0

  60. 60.

    Gutiérrez Guzmán, F., Oezel, M., Jacobs, G., Burghardt, G., Broeckmann, C., Janitzky, T.: Reproduction of white etching cracks under rolling contact loading on thrust bearing and two-disc test rigs. Wear. 390–391, 23–32 (2017). https://doi.org/10.1016/j.wear.2017.06.020

    CAS  Article  Google Scholar 

  61. 61.

    Danielsen, H.K., Guzmán, F.G., Dahl, K.V., Li, Y.J., Wu, J., Jacobs, G., Burghardt, G., Fæster, S., Alimadadi, H., Goto, S., Raabe, D., Petrov, R.: Multiscale characterization of white etching cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig. Wear. 370–371, 73–82 (2017). https://doi.org/10.1016/j.wear.2016.11.016

    CAS  Article  Google Scholar 

  62. 62.

    Richardson, A.D., Evans, M.-H., Wang, L., Wood, R.J.K., Ingram, M., Meuth, B.: The evolution of white etching cracks (WECs) in rolling contact fatigue-tested 100Cr6 steel. Tribol. Lett. 66, 6 (2018). https://doi.org/10.1007/s11249-017-0946-1

    CAS  Article  Google Scholar 

  63. 63.

    Richardson, A.D., Evans, M.-H., Wang, L., Wood, R.J.K., Ingram, M.: Thermal desorption analysis of hydrogen in non-hydrogen-charged rolling contact fatigue-tested 100Cr6 steel. Tribol. Lett. 66, 4 (2018). https://doi.org/10.1007/s11249-017-0947-0

    CAS  Article  Google Scholar 

  64. 64.

    Scepanskis, M., Gould, B., Greco, A.: Empirical investigation of electricity self-generation in a lubricated sliding–rolling contact. Tribol. Lett. 65, 109–119

  65. 65.

    Evans, M.-H., Richardson, A.D., Wang, L., Wood, R.J.K., Anderson, W.B.: Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation. Tribol. Int. 75, 87–97 (2014)

    Article  Google Scholar 

  66. 66.

    Franke, J., Carey, J.T., Korres, S., Haque, T., Jacobs, P.W., Loos, J., Kruhoeffer, W.: White etching cracking—simulation in bearing rig and bench tests. Tribol. Trans. 1–11 (2017). https://doi.org/10.1080/10402004.2017.1339839

  67. 67.

    Franke, J.: Influence of tribolayer on rolling bearing fatigue performed on a FE8 test rig. In: 9th International Colloquium Tribology: Industrial and Automotive Lubrication (2014)

  68. 68.

    Carey, J.: Lubricant effects on white etching cracking failures in thrust bearing rig tests. In: Wind Turbine Tribology Seminar. Argonne National Laboratory, Lemont (2016)

    Google Scholar 

  69. 69.

    Haque, T., Spyridon, K., Carey, J., Jackobs, P., Loos, J., Franke, J.: Lubricant effects on white etching cracking failures in thrust bearing rig tests. Tribol. Trans. https://doi.org/10.1080/10402004.2018.1453571 (2018)

    Article  Google Scholar 

  70. 70.

    Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004). https://doi.org/10.1023/B:TRIL.0000044495.26882.b5

    CAS  Article  Google Scholar 

  71. 71.

    Topolovec-Miklozic, K., Forbus, T.R., Spikes, H.A.: Film thickness and roughness of ZDDP antiwear films. Tribol. Lett. 26, 161–171 (2007). https://doi.org/10.1007/s11249-006-9189-2

    CAS  Article  Google Scholar 

  72. 72.

    Johnson, K.L., Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)

    Google Scholar 

  73. 73.

    Holweger, W., Wolf, M., Merk, D., Blass, T., Goss, M., Loos, J., Barteldes, S., Jakovics, A.: White etching crack root cause investigations. Tribol. Trans. 58, 59–69 (2015)

    CAS  Article  Google Scholar 

  74. 74.

    Kruhöffer, W., Loos, J.: WEC formation in rolling bearings under mixed friction: influences and “friction energy accumulation” as indicator. Tribol. Trans. 60, 516–529 (2017). https://doi.org/10.1080/10402004.2016.1183250

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Wind Energy Technology Office under Contract No. DE-AC02-06CH11357, as well as funding from Afton Chemical Limited. The authors are grateful to DOE Project Managers Mr. Michael Derby and Mr. Brad Ring for their support and encouragement. The authors would also like to acknowledge the assistance provided by our colleagues at Argonne National Laboratory’s Tribology Section, especially Dr. Maria De La Cinta Lorenzo Martin for her assistance with electron microscopy and Dr. Oyelayo Ajayi for his helpful discussion on metallurgy. Use of the Center for Nanoscale Materials an Office of Science user facility was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin Gould.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gould, B., Demas, N.G., Pollard, G. et al. The Effect of Lubricant Composition on White Etching Crack Failures. Tribol Lett 67, 7 (2019). https://doi.org/10.1007/s11249-018-1106-y

Download citation

Keywords

  • White etching cracks
  • Bearing failures
  • Microstructural alterations
  • Premature fatigue