Tribology Letters

, 67:7 | Cite as

The Effect of Lubricant Composition on White Etching Crack Failures

  • Benjamin GouldEmail author
  • Nicholaos G. Demas
  • Grant Pollard
  • Jakub Jelita Rydel
  • Marc Ingram
  • Aaron C. Greco
Original Paper


White etching cracks (WECs) are the dominant mode of failure for wind turbine gearbox bearings. These failures are characterized by subsurface initiation and local region of microstructural alterations adjacent to the crack faces. The definitive cause of WECs within the field is unknown, because of this laboratory replication has proved difficult. At a benchtop scale, specific lubricant formulations referred to as “bad reference oils” (BROs) are often employed to aid in the formation of WECs; however, exactly how these lubricants induce WECs is unknown. The present work intends to elucidate how these lubricants facilitate the formation of WECs by systematically varying the additives which are found in BROs and studying the effect that these additive combinations have on time until failure, as well as tribofilm development. It was found that the lubricant containing Zinc dialkyldithiophosphate alone led to the formation of WECs sooner than any lubricant studied. It was also documented that a lubricants frictional characteristics play a more dominant role than the tribofilm characteristics.


White etching cracks Bearing failures Microstructural alterations Premature fatigue 



This work is supported by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy, Wind Energy Technology Office under Contract No. DE-AC02-06CH11357, as well as funding from Afton Chemical Limited. The authors are grateful to DOE Project Managers Mr. Michael Derby and Mr. Brad Ring for their support and encouragement. The authors would also like to acknowledge the assistance provided by our colleagues at Argonne National Laboratory’s Tribology Section, especially Dr. Maria De La Cinta Lorenzo Martin for her assistance with electron microscopy and Dr. Oyelayo Ajayi for his helpful discussion on metallurgy. Use of the Center for Nanoscale Materials an Office of Science user facility was supported by the U.S. Department of Energy Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.


  1. 1.
    Kotzalas, M.N., Doll, G.L.: Tribological advancements for reliable wind turbine performance. Philos. Trans. R. Soc. Lond. Math. Phys. Eng. Sci. 368, 4829–4850 (2010)CrossRefGoogle Scholar
  2. 2.
    Musial, W., Butterfield, S., McNiff, B.: Improving wind turbine gearbox reliability. In: European Wind Energy Conference, Milan, Italy. pp. 7–10 (2007)Google Scholar
  3. 3.
    Greco, A., Sheng, S., Keller, J., Erdemir, A.: Material wear and fatigue in wind turbine systems. Wear. 302, 1583–1591 (2013)CrossRefGoogle Scholar
  4. 4.
    Gould, B., Greco, A., Stadler, K., Xiao, X.: An analysis of premature cracking associated with microstructural alterations in an AISI 52100 failed wind turbine bearing using X-ray tomography. Mater. Des. 117, 417–429 (2017). CrossRefGoogle Scholar
  5. 5.
    Gould, B., Greco, A., Stadler, K., Vegter, E., Xiao, X.: Using advanced tomography techniques to investigate the development of White Etching Cracks in a prematurely failed field bearing. Tribol. Int. (2017). CrossRefGoogle Scholar
  6. 6.
    Singh, H., Pulikollu, R.V., Hawkins, W., Smith, G.: Investigation of Microstructural Alterations in Low-and High-Speed Intermediate-Stage Wind Turbine Gearbox Bearings. Tribol Lett (2017).
  7. 7.
    Kang, J.-H., Hosseinkhani, B., Williams, C.A., Moody, M.P., Bagot, P.A.J., Rivera-Díaz-del-Castillo, P.E.J.: Solute redistribution in the nanocrystalline structure formed in bearing steels. Scr. Mater. 69, 630–633 (2013)CrossRefGoogle Scholar
  8. 8.
    Šmeļova, V., Schwedt, A., Wang, L., Holweger, W., Mayer, J.: Electron microscopy investigations of microstructural alterations due to classical rolling contact fatigue (RCF) in martensitic AISI 52100 bearing steel. Int. J. Fatigue 98, 142–154 (2017). CrossRefGoogle Scholar
  9. 9.
    Šmeļova, V., Schwedt, A., Wang, L., Holweger, W., Mayer, J.: Microstructural changes in white etching cracks (WECs) and their relationship with those in dark etching region (DER) and White Etching Bands (WEBs) due to rolling contact fatigue (RCF). Int. J. Fatigue. 100(Part 1), 148–158 (2017). CrossRefGoogle Scholar
  10. 10.
    Su, Y.-S., Yu, S.-R., Li, S.-X., He, Y.-N.: Review of the damage mechanism in wind turbine gearbox bearings under rolling contact fatigue. Front. Mech. Eng. (2017). CrossRefGoogle Scholar
  11. 11.
    Su, Y.-S., Li, S.-X., Lu, S.-Y., Shu, X.-D.: Deformation-induced amorphization and austenitization in white etching area of a martensite bearing steel under rolling contact fatigue. Int. J. Fatigue. 105, 160–168 (2017). CrossRefGoogle Scholar
  12. 12.
    Mikami, H., Kawamura, T.: Influence of Electrical Current on Bearing Flaking Life. SAE Technical Paper. (2007)Google Scholar
  13. 13.
    Tamada, K., Tanaka, H.: Occurrence of brittle flaking on bearings used for automotive electrical instruments and auxiliary devices. Wear. 199, 245–252 (1996)CrossRefGoogle Scholar
  14. 14.
    Kino, N., Otani, K.: The influence of hydrogen on rolling contact fatigue life and its improvement. JSAE Rev. 24, 289–294 (2003)CrossRefGoogle Scholar
  15. 15.
    Evans, M.-H.: An updated review: white etching cracks (WECs) and axial cracks in wind turbine gearbox bearings. Mater. Sci. Technol. 1–37 (2016)Google Scholar
  16. 16.
    Evans, M.H.: White structure flaking (WSF) in wind turbine gearbox bearings: effects of ‘butterflies’ and white etching cracks (WECs). Mater. Sci. Technol. 28, 3–22 (2012)CrossRefGoogle Scholar
  17. 17.
    Grabulov, A., Petrov, R., Zandbergen, H.W.: EBSD investigation of the crack initiation and TEM/FIB analyses of the microstructural changes around the cracks formed under rolling contact fatigue (RCF). Int. J. Fatigue 32, 576–583 (2010)CrossRefGoogle Scholar
  18. 18.
    Grabulov, A., Ziese, U., Zandbergen, H.W.: TEM/SEM investigation of microstructural changes within the white etching area under rolling contact fatigue and 3-D crack reconstruction by focused ion beam. Scr. Mater. 57, 635–638 (2007)CrossRefGoogle Scholar
  19. 19.
    Martin, J.A., Borgese, S.F., Eberhardt, A.D.: Microstructural alterations of rolling—bearing steel undergoing cyclic stressing. J. Fluids Eng. 88, 555–565 (1966)Google Scholar
  20. 20.
    O’Brien, J.L., King, A.H.: Electron microscopy of stress-induced structural alterations near inclusions in bearing steels. J. Fluids Eng. 88, 568–571 (1966)Google Scholar
  21. 21.
    Lund, T.B., Beswick, J., Dean, S.W.: Sub-surface initiated rolling contact fatigue—influence of non-metallic inclusions, processing history, and operating conditions. J. ASTM Int. 7, 102559 (2010). CrossRefGoogle Scholar
  22. 22.
    Scott, D., Loy, B., Mills, G.H.: Paper 10: metallurgical aspects of rolling contact fatigue. In: Proceedings of the Institution of Mechanical Engineers, Conference Proceedings. pp. 94–103. SAGE Publications. (1966)Google Scholar
  23. 23.
    Stadler, K., Lai, J., Vegter, R.: A review: the dilemma with premature white etching crack (WEC) bearing failures. In: Bearing Steel Technologies: 10th Volume, Advances in Steel Technologies for Rolling Bearings. ASTM International, (2015)Google Scholar
  24. 24.
    Luyckx, J.: Hammering Wear Impact Fatigue Hypothesis WEC/irWEA Failure Mode on Roller Bearings. Wind Turbine Tribology Seminar, Broomfield (2011)Google Scholar
  25. 25.
    Hyde, S.: White Etch Areas: Metallurgical Characterization & Atomistic Modeling. Wind Turbine Tribology Seminar, Argonne (2014)Google Scholar
  26. 26.
    Solano-Alvarez, W., Bhadeshia, H.: White-etching matter in bearing steel. Part II: distinguishing cause and effect in bearing steel failure. Metall. Mater. Trans. A 45, 4916–4931 (2014)CrossRefGoogle Scholar
  27. 27.
    Bhadeshia, H.: Steels for bearings. Prog. Mater Sci. 57, 268–435 (2012)CrossRefGoogle Scholar
  28. 28.
    Evans, M.-H., Richardson, A.D., Wang, L., Wood, R.J.K.: Serial sectioning investigation of butterfly and white etching crack (WEC) formation in wind turbine gearbox bearings. Wear. 302, 1573–1582 (2013)CrossRefGoogle Scholar
  29. 29.
    Bruce, T., Rounding, E., Long, H., Dwyer-Joyce, R.S.: Characterisation of white etching crack damage in wind turbine gearbox bearings. Wear. 338, 164–177 (2015)CrossRefGoogle Scholar
  30. 30.
    Gould, B., Greco, A.: Investigating the process of white etching crack initiation in bearing steel. Tribol. Lett. 62, 1–14 (2016)CrossRefGoogle Scholar
  31. 31.
    Manieri, F., Stadler, K., Morales-Espejel, G.E., Kadiric, A.: The origins of white etching cracks and their significance to rolling bearing failures. Int J Fatigue 120, 107–133 (2019)CrossRefGoogle Scholar
  32. 32.
    Errichello, R., Sheng, S., Keller, J., Greco, A.: Wind Trubine Tribology: A Recap. In: U.S. Department of Energy, EERE Wind and Water Power ProgramGoogle Scholar
  33. 33.
    Holweger, W.: Progresses in solving white etching crack phenoma. NREL-Gearbox Reliability Collaborative, Golden, CO, p. 45 (2014)Google Scholar
  34. 34.
    Strandell, I., Fajers, C., Lund, T.: Corrosion—one root cause for premature failures. In: 37th Leeds-Lyon Symposium on Tribology, (2010)Google Scholar
  35. 35.
    Loos, J., Bergmann, I., Goss, M.: Influence of currents from electrostatic charges on WEC formation in rolling bearings. Tribol. Trans. 59, 865–875 (2016). CrossRefGoogle Scholar
  36. 36.
    Gegner, J.: Tribological Aspects of Rolling Bearing Failures. INTECH Open Access Publisher, Rijeka (2011)CrossRefGoogle Scholar
  37. 37.
    Gould, B.J., Burris, D.L.: Effects of wind shear on wind turbine rotor loads and planetary bearing reliability. Wind Energy. 19, 1011–1021 (2015). CrossRefGoogle Scholar
  38. 38.
    Garabedian, N., Gould, B., Doll, G., Burris, D.: Wear and fatigue as contributors to the premature failure of wind turbine planet bearings—under-loading or over-loading? Tribol. Trans. (2018). CrossRefGoogle Scholar
  39. 39.
    Keller, J.: Investigating main and high-speed shaft bearing reliability through uptower testing. In: 2018 Drivetrain Reliability Collaborative Annual Meeting, Golden, CO. (2018)Google Scholar
  40. 40.
    Iso, K., Yokouchi, A., Takemura, H.: Research work for clarifying the mechanism of white structure flaking and extending the life of bearings. SAE Technical Paper (2005)Google Scholar
  41. 41.
    Vegter, R.H., Slycke, J.T.: The role of hydrogen on rolling contact fatigue response of rolling element bearings. J. ASTM Int. 7, 1–12 (2009)Google Scholar
  42. 42.
    Uyama, H., Yamada, H., Hidaka, H., Mitamura, N.: The effects of hydrogen on microstructural change and surface originated flaking in rolling contact fatigue. Tribol. Online 6, 123–132 (2011)CrossRefGoogle Scholar
  43. 43.
    Hiraoka, K., Fujimatsu, T., Tsunekage, N., Yamamoto, A.: Generation process observation of micro-structural change in rolling contact fatigue by hydrogen-charged specimens. J. Jpn. Soc. Tribol. 52, 888–895 (2007)Google Scholar
  44. 44.
    Ciruna, J.A., Szieleit, H.J.: The effect of hydrogen on the rolling contact fatigue life of AISI 52100 and 440C steel balls. Wear. 24, 107–118 (1973)CrossRefGoogle Scholar
  45. 45.
    Grunberg, L.: The formation of hydrogen peroxide on fresh metal surfaces. Proc. Phys. Soc. B. 66, 153 (1953)CrossRefGoogle Scholar
  46. 46.
    Imran, T., Jacobson, B., Shariff, A.: Quantifying diffused hydrogen in AISI-52100 bearing steel and in silver steel under tribo-mechanical action: Pure rotating bending, sliding–rotating bending, rolling–rotating bending and uni-axial tensile loading. Wear. 261, 86–95 (2006)CrossRefGoogle Scholar
  47. 47.
    Ray, D., Vincent, L., Coquillet, B., Guirandenq, P., Chene, J., Aucouturier, M.: Hydrogen embrittlement of a stainless ball bearing steel. Wear 65, 103–111 (1980)CrossRefGoogle Scholar
  48. 48.
    Matsubara, Y., Hamada, H.: A novel method to evaluate the influence of hydrogen on fatigue properties of high strength steels. J. ASTM Int. 3, 1–14 (2006)CrossRefGoogle Scholar
  49. 49.
    Lü, H., Li, M., Zhang, T., Chu, W.: Hydrogen-enhanced dislocation emission, motion and nucleation of hydrogen-induced cracking for steel. Sci. China Ser. E 40, 530–538 (1997)CrossRefGoogle Scholar
  50. 50.
    Fujita, S., Matsuoka, S., Murakami, Y., Marquis, G.: Effect of hydrogen on mode II fatigue crack behavior of tempered bearing steel and microstructural changes. Int. J. Fatigue 32, 943–951 (2010)CrossRefGoogle Scholar
  51. 51.
    Evans, M.-H., Richardson, A.D., Wang, L., Wood, R.J.K.: Effect of hydrogen on butterfly and white etching crack (WEC) formation under rolling contact fatigue (RCF). Wear. 306, 226–241 (2013)CrossRefGoogle Scholar
  52. 52.
    Ruellan, A., Ville, F., Kleber, X., Arnaudon, A., Girodin, D.: Understanding white etching cracks in rolling element bearings: the effect of hydrogen charging on the formation mechanisms. Proc. Inst. Mech. Eng. J. 228, 1252–1265 (2014)Google Scholar
  53. 53.
    Evans, M.-H., Wang, L., Jones, H., Wood, R.J.K.: White etching crack (WEC) investigation by serial sectioning, focused ion beam and 3-D crack modelling. Tribol. Int. 65, 146–160 (2013)CrossRefGoogle Scholar
  54. 54.
    Paladugu, M., Scott Hyde, R.: White etching matter promoted by intergranular embrittlement. Scr. Mater. 130, 219–222 (2017). CrossRefGoogle Scholar
  55. 55.
    Paladugu, M., Hyde, S.: Microstructure deformation and white etching matter formation along cracks. Wear 390–391, 367–375 (2017)CrossRefGoogle Scholar
  56. 56.
    Gould, B., Greco, A.: The influence of sliding and contact severity on the generation of white etching cracks. Tribol. Lett. 60, 1–13 (2015)CrossRefGoogle Scholar
  57. 57.
    Li, S.-X., Su, Y.-S., Shu, X.-D., Chen, J.-J.: Microstructural evolution in bearing steel under rolling contact fatigue. Wear. 380–381, 146–153 (2017). CrossRefGoogle Scholar
  58. 58.
    Bruce, T., Long, H., Slatter, T., Dwyer-Joyce, R.s.: Formation of white etching cracks at manganese sulfide (MnS) inclusions in bearing steel due to hammering impact loading. Wind Energy. 19, 1903–1915 (2016). CrossRefGoogle Scholar
  59. 59.
    Bruce, T., Long, H., Dwyer-Joyce, R.S.: Threshold maps for inclusion-initiated micro-cracks and white etching areas in bearing steel: the role of impact loading and surface sliding. Tribol. Lett. 66, (2018).
  60. 60.
    Gutiérrez Guzmán, F., Oezel, M., Jacobs, G., Burghardt, G., Broeckmann, C., Janitzky, T.: Reproduction of white etching cracks under rolling contact loading on thrust bearing and two-disc test rigs. Wear. 390–391, 23–32 (2017). CrossRefGoogle Scholar
  61. 61.
    Danielsen, H.K., Guzmán, F.G., Dahl, K.V., Li, Y.J., Wu, J., Jacobs, G., Burghardt, G., Fæster, S., Alimadadi, H., Goto, S., Raabe, D., Petrov, R.: Multiscale characterization of white etching cracks (WEC) in a 100Cr6 bearing from a thrust bearing test rig. Wear. 370–371, 73–82 (2017). CrossRefGoogle Scholar
  62. 62.
    Richardson, A.D., Evans, M.-H., Wang, L., Wood, R.J.K., Ingram, M., Meuth, B.: The evolution of white etching cracks (WECs) in rolling contact fatigue-tested 100Cr6 steel. Tribol. Lett. 66, 6 (2018). CrossRefGoogle Scholar
  63. 63.
    Richardson, A.D., Evans, M.-H., Wang, L., Wood, R.J.K., Ingram, M.: Thermal desorption analysis of hydrogen in non-hydrogen-charged rolling contact fatigue-tested 100Cr6 steel. Tribol. Lett. 66, 4 (2018). CrossRefGoogle Scholar
  64. 64.
    Scepanskis, M., Gould, B., Greco, A.: Empirical investigation of electricity self-generation in a lubricated sliding–rolling contact. Tribol. Lett. 65, 109–119Google Scholar
  65. 65.
    Evans, M.-H., Richardson, A.D., Wang, L., Wood, R.J.K., Anderson, W.B.: Confirming subsurface initiation at non-metallic inclusions as one mechanism for white etching crack (WEC) formation. Tribol. Int. 75, 87–97 (2014)CrossRefGoogle Scholar
  66. 66.
    Franke, J., Carey, J.T., Korres, S., Haque, T., Jacobs, P.W., Loos, J., Kruhoeffer, W.: White etching cracking—simulation in bearing rig and bench tests. Tribol. Trans. 1–11 (2017).
  67. 67.
    Franke, J.: Influence of tribolayer on rolling bearing fatigue performed on a FE8 test rig. In: 9th International Colloquium Tribology: Industrial and Automotive Lubrication (2014)Google Scholar
  68. 68.
    Carey, J.: Lubricant effects on white etching cracking failures in thrust bearing rig tests. In: Wind Turbine Tribology Seminar. Argonne National Laboratory, Lemont (2016)Google Scholar
  69. 69.
    Haque, T., Spyridon, K., Carey, J., Jackobs, P., Loos, J., Franke, J.: Lubricant effects on white etching cracking failures in thrust bearing rig tests. Tribol. Trans. (2018)CrossRefGoogle Scholar
  70. 70.
    Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004). CrossRefGoogle Scholar
  71. 71.
    Topolovec-Miklozic, K., Forbus, T.R., Spikes, H.A.: Film thickness and roughness of ZDDP antiwear films. Tribol. Lett. 26, 161–171 (2007). CrossRefGoogle Scholar
  72. 72.
    Johnson, K.L., Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1987)Google Scholar
  73. 73.
    Holweger, W., Wolf, M., Merk, D., Blass, T., Goss, M., Loos, J., Barteldes, S., Jakovics, A.: White etching crack root cause investigations. Tribol. Trans. 58, 59–69 (2015)CrossRefGoogle Scholar
  74. 74.
    Kruhöffer, W., Loos, J.: WEC formation in rolling bearings under mixed friction: influences and “friction energy accumulation” as indicator. Tribol. Trans. 60, 516–529 (2017). CrossRefGoogle Scholar

Copyright information

© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018

Authors and Affiliations

  1. 1.Applied Materials DivisionArgonne National LaboratoryLemontUSA
  2. 2.Afton Chemical CorporationRichmondUSA
  3. 3.Afton Chemical LtdBracknellUK
  4. 4.Ingram Tribology LtdCarmarthenUK

Personalised recommendations