Advertisement

Tribology Letters

, 67:3 | Cite as

Frequency-Modulation Atomic Force Microscopic Observation for Ultralow Frictional Solid–Liquid Interface of Diamond-Like Carbon in an Environmentally Friendly Oil

  • Hikaru Okubo
  • Shinya Sasaki
Article
  • 80 Downloads

Abstract

The structure of the low friction solid–liquid interface of the diamond-like carbons (DLCs) in fatty acid was investigated by controlled frequency-modulation atomic force microscopy (FM-AFM) to elucidate the low frictional mechanism that arises under boundary lubrication. We focused on two factors in particular: the effect of the DLC type and the frictional energy in the structure of the adsorbents at the interface. The FM-AFM results indicate that the ultralow frictional tetrahedral amorphous carbon–fatty-acid interface was composed of a thick boundary film with a high molecular density, which may support the sliding surfaces and thereby reduce the friction.

Keywords

Diamond-like Atomic force microscopy Boundary Lubrication 

Notes

Acknowledgements

This work was supported by JSPS Grant-in-Aid for JSPS Research Fellow Grant Number JP16J090430. The authors are extremely grateful to Dr. Hideki Moriguti in NIPPON ITF Corporation to provide the ta-C coating used in this study and Mr. Tetsuya Tamura in KYB Corporation to provide the a-C:H coating.

References

  1. 1.
    Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129–281 (2002)CrossRefGoogle Scholar
  2. 2.
    Donnet, C., Belin, M., Auge, J.C., Martin, J.M., Grill, A., Patel, V.: Tribochemistry of diamond-like carbon coatings in various environments. Surf. Coat. Technol. 68–69, 626–631 (1994)CrossRefGoogle Scholar
  3. 3.
    Erdemir, A., Eryilmaz, O.L., Fenske, G.: Synthesis of diamond like carbon films with superlow friction and wear properties. J. Vac. Sci. Technol. A 18, 1987–1992 (2000)CrossRefGoogle Scholar
  4. 4.
    Kano, M.: Superlow friction of DLC applied to engine cam follower lubricated with ester-containing oil. Tribol. Int. 39, 1682–1685 (2006)CrossRefGoogle Scholar
  5. 5.
    Kano, M., Yasuda, Y., Okamoto, Y., Mabuchi, Y., Hamada, T., Ueno, T., et al.: Ultralow friction of DLC in presence of glycerol mono-oleate (GMO). Tribol. Lett. 18(2), 245–251 (2005)CrossRefGoogle Scholar
  6. 6.
    Kano, M., Martain, J.M., Yoshida, K., De Barros Bouchet, M.I.: Super-low friction of ta-C coating in presence of oleic acid. Friction 2(2), 156–163 (2014)CrossRefGoogle Scholar
  7. 7.
    De Barros Bouchet, M.I., Matta, C., Le-Mogne, T.H., Martin, J.M., Zhang, Q., Goddard, W., Kano, M., Mabuchi, Y., Ye, J.: Superlubricity mechanism of diamond-like carbon with glycerol. Coupling of experimental and simulation studies. J. Phys. 89, 1–14 (2008)Google Scholar
  8. 8.
    Ye, J., Okamoto, Y., Yasuda, Y.: Direct insight into near-friction less behavior displayed by diamond-like carbon coatings in lubricants. Tribol. Lett. 29, 53–56 (2008)CrossRefGoogle Scholar
  9. 9.
    Okubo, H., Watanabe, S., Tadokoro, C., Sasaki, S.: Ultralow friction of a tetrahedral amorphous carbon film lubricated with an environmentally friendly ester-based oil. Tribol. Online 11(2), 102–113 (2016)CrossRefGoogle Scholar
  10. 10.
    De Barros Bouchet, M.I., Martin, J.M., Avila, J., Kano, M., Yoshida, K., Tsuruda, T., Bai, S., Higuchi, Y., Ozawa, N., Kubo, M., Asensio, M.C.: Diamond-like carbon coating under oleic acid lubrication: evidence for graphene oxide formation in superlow friction. Sci. Rep. (2017).  https://doi.org/10.1038/srep46394 CrossRefGoogle Scholar
  11. 11.
    Bowden, F.P., Tabor, D.: Friction and Lubrication of Solids. Oxford University Press, Oxford (1950)Google Scholar
  12. 12.
    Hardy, W.B., Bircumshaw, I.: Boundary lubrication—plane surfaces and the limitations of Amontons’ Law. Proc. R. Soc. Lond. A 108, 1–27 (1925)CrossRefGoogle Scholar
  13. 13.
    Deeley, R.M.: Oiliness and lubrication. Discussion on lubrication. Proc. Phys. Soc. 32, 1s–11s (1919)Google Scholar
  14. 14.
    Cann, P.M., Spikes, H.A.: In-contact IR spectroscopy of hydrocarbon lubricants. Tribol. Lett. 19, 289–297 (2005)CrossRefGoogle Scholar
  15. 15.
    Piras, F.M., Rossi, A., Spencer, N.D.: Growth of tribological films: in situ characterization based on attenuated total reflection infrared spectroscopy. Langmuir 18(17), 6606–6613 (2002)CrossRefGoogle Scholar
  16. 16.
    Piras, F.M., Rossi, A., Spencer, N.D.: Combined in situ (ATR FT-IR) and ex situ (XPS) study of the ZnDTP–iron surface interaction. Tribol. Lett. 15(3), 181–191 (2003)CrossRefGoogle Scholar
  17. 17.
    Ward, R.N., Duffy, D.C., Davies, P.B., Bain, C.D.: Sum-frequency spectroscopy of surfactants adsorbed at a flat hydrophobic surface. J. Phys. Chem. 98(34), 8536–8542 (1994)CrossRefGoogle Scholar
  18. 18.
    Miyake, K., Kume, T., Nakano, M., Korenaga, A., Takiwatari, K., Tsuboi, R., Sasaki, S.: Effects of surface chemical properties on the frictional properties of self-assembled monolayers lubricated with oleic acid. Tribol. Online 7(4), 218–224 (2012)CrossRefGoogle Scholar
  19. 19.
    Watanabe, S., Nakano, M., Miyake, K., Sasaki, S.: Analysis of the interfacial molecular behavior of a lubrication film of n-dodecane containing stearic acid under lubricating conditions by sum frequency generation spectroscopy. Langmuir 32, 13649–13656 (2016)CrossRefGoogle Scholar
  20. 20.
    Albrecht, T.R., Grütter, P., Horne, D., Rugar, D.: Frequency modulation detection using high-Q cantilevers for enhanced force microscope sensitivity. J. Appl. Phys. 69, 668 (1991)CrossRefGoogle Scholar
  21. 21.
    Sader, J.E., Jarvis, S.P.: Accurate formulas for interaction force and energy in frequency modulation force spectroscopy. Appl. Phys. Lett. 84, 1801 (2004)CrossRefGoogle Scholar
  22. 22.
    Fukuma, T., Kobayashi, K., Matsushige, K., Yamada, H.: True atomic resolution in liquid by frequency-modulation atomic force microscopy. Appl. Phys. Lett. 86, 193108 (2005)CrossRefGoogle Scholar
  23. 23.
    Tomoko, H., Ryota, K., Keita, F., Takashi, M., Hiroshi, K., Hiroshi, O.: Cross-sectional imaging of boundary lubrication layer formed by fatty acid by means of frequency-modulation atomic force microscopy. Langmuir 33, 10492–10500 (2017)CrossRefGoogle Scholar
  24. 24.
    Hamrock, B.J., Schmid, S.R., Jacobson, B.O.: Fundamentals of Fluid Film Lubrication. CRC Press, Boca Raton (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Graduate SchoolTokyo University of ScienceKatsushika-kuJapan
  2. 2.Tokyo University of ScienceTokyoJapan

Personalised recommendations