Skip to main content
Log in

Vacuum Tribological Performance of WS2–MoS2 Composite Film Against Oil-Impregnated Porous Polyimide: Influence of Oil Viscosity

Tribology Letters Aims and scope Submit manuscript

Abstract

To achieve the desired levels of performance and durability for bearings applied in space, a novel solid–liquid dual lubricating system was established via the WS2–MoS2 composite films sliding against oil-impregnated porous polyimide (PPI), in which polyalphaolefin (PAO) oils with different viscosities were used, respectively. The contact angle measurement indicated that the PAO oil had good wettability on the surfaces of the composite film and the PPI. The vacuum tribological behaviors of single WS2–MoS2 composite film and the dual lubricating system were mainly evaluated under different loads and speeds. In comparison with single WS2–MoS2 composite film, the dual lubricating system exhibited the low friction coefficient and synergistic lubricating effect for the low-viscosity PAO oil under severe sliding conditions. It was concluded that the cleavages of the WS2 and MoS2 crystals along the basal plane were more sufficient and formed small and thin WS2 and MoS2 platelets in the dual lubricating system. Meanwhile, it was found that oil-impregnated PPI readily released PAO lubricating oil with low viscosity, which further decreased friction on the contact interface. The lubricating mechanism of the dual lubricating system was also revealed after correlating the tribological behaviors of the different lubricating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Hilton, M.R., Fleischauer, P.D.: Applications of solid lubricant films in spacecraft. Surf. Coat. Technol. 54–55, 435–441 (1992)

    Article  Google Scholar 

  2. Wu, Y.X., Liu, Y., Yu, S.W., Zhou, B., Tang, B., Li, H.X., Chen, J.M.: Influences of space irradiations on the structure and properties of MoS2/DLC lubricant film. Tribol. Lett. 64(24), 1–10 (2016)

    CAS  Google Scholar 

  3. Fan, X.Q., Xue, Q.J., Wang, L.P.: Carbon-based solid-liquid lubricating coatings for space applications—a review. Friction. 3(3), 191–207 (2015)

    Article  CAS  Google Scholar 

  4. Liu, X.F., Wang, L.P., Xue, Q.J.: A novel carbon-based solid-liquid duplex lubricating coating with super-high tribological performance for space applications. Surf. Coat. Technol. 205(8–9), 2738–2746 (2011)

    Article  CAS  Google Scholar 

  5. González, R., Hernández Battez, A., Blanco, D., Viesca, J.L., Fernández-González, A.: Lubrication of TiN, CrN and DLC PVD coatings with 1-Butyl-1-Methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate. Tribol. Lett. 40, 269–277 (2010)

    Article  Google Scholar 

  6. Mutyala, K.C., Singh, H., Fouts, J.A., Evans, R.D., Doll, G.L.: Influence of MoS2 on the rolling contact performance of bearing steels in boundary lubrication: a different approach. Tribol. Lett. 61(20), 1–11 (2016)

    CAS  Google Scholar 

  7. Paskvale, S., Remškar, M., Čekada, M.: Tribological performance of TiN, TiAlN and CrN hard coatings lubricated by MoS2 nanotubes in polyalphaolefin oil. Wear. 352–353, 72–78 (2016)

    Article  Google Scholar 

  8. Liu, Y.H., Xin, L., Zhang, Y.J., Chen, Y.F., Zhang, S.M., Zhang, P.Y.: The effect of Ni nanoparticles on the lubrication of a DLC-based solid-liquid synergetic system in all lubrication regimes. Tribol. Lett. 65(31), 1–9 (2017)

    Google Scholar 

  9. Espallargas, N., Vitoux, L., Armada, S.: The wear and lubrication performance of liquid-solid self-lubricated coatings. Surf. Coat. Technol. 235, 342–353 (2013)

    Article  CAS  Google Scholar 

  10. Armada, S., Schmid, R., Equey, S., Fagoaga, I., Espallargas, N.: Liquid-solid self-lubricated coatings. J. Therm. Spray Technol. 22(1), 10–17 (2012)

    Article  Google Scholar 

  11. Evans, D.C.: Self-lubricating bearings. Ind. Lubr. Tribol. 33(4), 132–138 (1981)

    Article  CAS  Google Scholar 

  12. Kang, S.C., Chung, D.W.: The synthesis and frictional properties of lubricant-impregnated cast nylons. Wear. 239, 244–250 (2000)

    Article  CAS  Google Scholar 

  13. Bertrand, P.A., Carré, D.J.: Oil exchange between ball bearings and porous polyimide ball bearing retainers. Tribol. Trans. 40(2), 294–302 (1997)

    Article  CAS  Google Scholar 

  14. Zhang, D., Wang, T.M., Wang, Q.H., Wang, C.: Selectively enhanced oil retention of porous polyimide bearing materials by direct chemical modification. J. Appl. Polym. Sci. 134(29), 45106 (2017)

    Article  Google Scholar 

  15. Lv, M., Zheng, F., Wang, Q.H., Wang, T.M., Liang, Y.M.: Friction and wear behaviors of carbon and aramid fibers reinforced polyimide composites in simulated space environment. Tribol. Int. 92, 246–254 (2015)

    Article  CAS  Google Scholar 

  16. Jia, Z.N., Yan, Y.H., Wang, W.Z.: Preparation and tribological properties of PI oil-bearing material with controllable pore size. Ind. Lubr. Tribol. 69(2), 88–94 (2017)

    Article  Google Scholar 

  17. Lv, M., Wang, C., Wang, Q.H., Wang, T.M., Liang, Y.M.: Highly stable tribological performance and hydrophobicity of porous polyimide material filled with lubricants in a simulated space environment. RSC Adv. 5(66), 53543–53549 (2015)

    Article  CAS  Google Scholar 

  18. Yan, P.X., Zhu, P., Huang, L.J., Wang, X.D., Gu, H.P., Huang, P.: Study on tribological properties of porous polyimide containing lubricants. Tribology. 28(3), 272–276 (2008)

    CAS  Google Scholar 

  19. Sathyan, K., Gopinath, K., Lee, S.H., Hsu, H.Y.: Bearing retainer designs and retainer instability failures in spacecraft moving mechanical systems. Tribol. Trans. 55, 503–511 (2012)

    Article  CAS  Google Scholar 

  20. Wang, J.Q., Zhao, H.J., Huang, W., Wang, X.L.: Investigation of porous polyimide lubricant retainers to improve the performance of rolling bearings under conditions of starved lubrication. Wear 380–381, 52–58 (2017)

    Article  Google Scholar 

  21. Gao, X.M., Hu, M., Sun, J.Y., Fu, Y.L., Yang, J., Liu, W.M., Weng, L.J.: Changes in the composition, structure and friction property of sputtered MoS2 films by LEO environment exposure. Appl. Surf. Sci. 330, 30–38 (2015)

    Article  CAS  Google Scholar 

  22. Sun, G., Bhowmick, S., Alpas, A.T.: Effect of atmosphere and temperature on the tribological behavior of the Ti containing MoS2 coatings against aluminum. Tribol. Lett. 65, 157–170 (2017)

    Article  Google Scholar 

  23. Zhao, X.Y., Zhang, G.G., Wang, L.P., Xue, Q.J.: The tribological mechanism of MoS2 film under different humidity. Tribol. Lett. 65, 64–72 (2017)

    Article  Google Scholar 

  24. Todd, M.J.: Solid lubrication of ball-bearings for spacecraft mechanisms. Tribol. Int. 15, 331–337 (1982)

    Article  CAS  Google Scholar 

  25. Qiu, Y.X., Wang, Q.H., Wang, C., Wang, T.M.: Oil-containing and tribological properties of porous polyimide containing lubricant oil. Tribology 32(6), 538–543 (2012)

    CAS  Google Scholar 

  26. Spalvins, T.: Friction and morphological properties of Au-MoS2 films sputtered from a compact target. Thin Solid Films 118, 372–384 (1984)

    Article  Google Scholar 

  27. Fleischauer, P.D., Lince, J.R.: A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants. Tribol. Int. 32(11), 627–636 (1999)

    Article  CAS  Google Scholar 

  28. Weimin Liu, L.W., Jiayi, S.: Handbook of Space Lubricating Materials and Technology, 1st edn. Science Press, Beijing (2009)

    Google Scholar 

  29. Rai, Y., Neville, A., Morina, A.: Transient processes of MoS2 tribofilm formation under boundary lubrication. Lubr. Sci. 28(7), 449–471 (2016)

    Article  CAS  Google Scholar 

  30. Fayeulle, S., Ehni, P.D., Singer, I.L.: Role of transfer films in wear of MoS2 coatings. Tribol. Ser. 17, 129–138 (1990)

    Article  Google Scholar 

  31. Marchetti, M., Vergne, M.M., Sicre, P., Durand, J.M.: Porous polyimide as oil reservoir in space mechanisms. In: International Tribology Conference (2000)

  32. Quan, X., Hu, M., Gao, X.M., Fu, Y.L., Weng, L.J., Wang, D.S., Jiang, D., Sun, J.Y.: Friction and wear performance of dual lubrication systems combining WS2-MoS2 composite film and low volatility oils under vacuum condition. Tribol. Int. 99, 57–66 (2016)

    Article  CAS  Google Scholar 

  33. Groszek, A.J.: Preferential adsorption of long-chains mormal paraffins on MoS2, WS2 and graphite from n-heptane. Nature 204, 680–680 (1964)

    Article  CAS  Google Scholar 

  34. Andrews, G.I., Groszek, A.J., Hairs, N.: Measurement of surface areas of basal plane and polar sites in graphite and MoS2 powders. A S L E Trans. 15(3), 184–191 (1972)

    Article  CAS  Google Scholar 

  35. Quan, X., Gao, X.M., Weng, L.J., Hu, M., Jiang, D., Wang, D.S., Sun, J.Y., Liu, W.M.: Tribological behavior of WS2-based solid/liquid lubricating systems dominated by the surface properties of WS2 crystallographic planes. RSC Adv. 5(80), 64892–64901 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 51505463, 51705506, 51575508).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dong Jiang, Dapeng Feng or Jiayi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Jiang, D., Fu, Y. et al. Vacuum Tribological Performance of WS2–MoS2 Composite Film Against Oil-Impregnated Porous Polyimide: Influence of Oil Viscosity. Tribol Lett 67, 2 (2019). https://doi.org/10.1007/s11249-018-1101-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1101-3

Keywords

Navigation