Skip to main content

Advertisement

Log in

Structural, Mechanical, and Tribological Properties of WS2-Al Nanocomposite Film for Space Application

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this paper, WS2-Al nanocomposite films were deposited by closed-field unbalanced magnetron sputtering to improve the microstructure and wear resistance of pure WS2 film. Results revealed that pure WS2 film presented a columnar microstructure, but the growth of WS2 platelets could be significantly suppressed by doping Al. Correspondingly, the WS2-Al composite film showed a dense fiber-like microstructure at low Al content (~ 3 at.%) and a featureless one at higher Al content (~ 6–12 at.%). The film densification resulted in a significantly improved hardness from ~ 0.3 GPa for pure WS2 film to 2.9 GPa for WS2-3 at.% Al film and to 4.7–5.7 GPa for WS2 composite films with higher Al contents of ~ 6–12 at.%, but the composite films with higher Al contents were brittle. As a result, only the composite film with Al content of ~ 3 at.% exhibited a much better wear resistance than pure WS2 film. In vacuum environment, the wear life of WS2-3 at.% Al composite film about 1.5 × 106 cycles was much higher than that of pure WS2 film ~ 6.5 × 105 cycles, exhibiting a potential application in space technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Briscoe, H.M.: Why space tribology?. Tribol. Int. 23, 67–74 (1990)

    Article  Google Scholar 

  2. Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004)

    Article  CAS  Google Scholar 

  3. Tribble, A.C., Lukins, R., Watts, E.: United States and Russian thermal control coating results in low earth orbit. J Spacecr. Rockets 33, 160–166 (1996)

    Article  CAS  Google Scholar 

  4. Gouzman, I., Girshevitz, O., Grossman, E., Eliaz, N., Sukenik, C.N.: Thin film oxide barrier layers: protection of kapton from space environment by liquid phase deposition of titanium oxide. ACS Appl. Mater. Interfaces 2, 1835–1843 (2010)

    Article  CAS  Google Scholar 

  5. Kannel, J.W., Dufrane, K.F.: Tribology needs for future space and aeronautical systems. NASA Conference Paper 2423, November (1986)

  6. Roberts, E.W.: Ultralow friction films of MoS2 for space applications. Thin Solid Films 181, 461–473 (1989)

    Article  CAS  Google Scholar 

  7. Spalvins, T.: Frictional and morphological performances of Au-MoS2 films sputtered from a compact target.·Thin. Solid Films 118, 375–384 (1984)

    Article  CAS  Google Scholar 

  8. Singh, H., Mutyala, K.C., Evans, R.D., Doll, G.L.: An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments. Surf. Coat. Technol. 284, 281–289 (2015)

    Article  CAS  Google Scholar 

  9. Quan, X., Hu, M., Gao, X., Fu, Y., Weng, L., Wang, D., Jiang, D., Sun, J.: Friction and wear performance of dual lubrication systems combining WS2-MoS2 composite film and low volatility oils under vacuum condition. Tribol. Int. 99, 57–66 (2016)

    Article  CAS  Google Scholar 

  10. Bülbül, F., Efeoǧlu, İ, Arslan, E.: The effect of bias voltage and working pressure on S/Mo ratio at MoS2-Ti composite films. Appl. Surf. Sci. 253, 4415–4419 (2007)

    Article  Google Scholar 

  11. Ding, X., Zeng, X.T., He, X.Y., Chen, Z.: Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere. Surf. Coat. Technol. 205, 224–231 (2010)

    Article  CAS  Google Scholar 

  12. Ye, M., Zhang, G., Ba, Y., Wang, T., Wang, X., Liu, Z.: Microstructure and tribological properties of MoS2 + Zr composite coatings in high humidity environment. Appl. Surf. Sci. 367, 140–146 (2016)

    Article  CAS  Google Scholar 

  13. Scharf, T.W., Prasad, S.V., Dugger, M.T., Kotula, P.G., Goeke, R.S., Grubbs, R.K.: Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Mater. 54, 4731–4743 (2006)

    Article  CAS  Google Scholar 

  14. Michael, E., René, S.: Space mechanisms and tribology challenges of future space missions. Acta Astronaut. 55, 935–943 (2004)

    Article  Google Scholar 

  15. Xu, S., Gao, X., Hu, M., Sun, J., Jiang, D., Wang, D., Zhou, F., Weng, L., Liu, W.: Dependence of atomic oxygen resistance and the tribological properties on microstructures of WS2 film. Appl. Surf. Sci. 298, 36–43 (2014)

    Article  CAS  Google Scholar 

  16. Xu, S., Gao, X., Hu, M., Sun, J., Jiang, D., Zhou, F., Liu, W., Weng, L.: Nanostructured WS2-Ni composite films for improved oxidation, resistance and tribological performance. Appl. Surf. Sci. 288, 15–25 (2014)

    Article  CAS  Google Scholar 

  17. Xu, S., Gao, X., Hu, M., Sun, J., Wang, D., Zhou, F., Weng, L., Liu, W.: Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties. Surf. Coat. Technol. 238, 197–206 (2014)

    Article  CAS  Google Scholar 

  18. Xu, S., Gao, X., Hu, M., Wang, D., Jiang, D., Sun, J., Zhou, F., Weng, L., Liu, W.: Microstructure evolution and enhanced tribological properties of Cu-doped WS2 films. Tribol. Lett. 55, 1–13 (2014)

    Article  CAS  Google Scholar 

  19. Renevier, N.M., Fox, V.C., Teer, D.G., Hampshire, J.: Coating characteristics and tribological properties of sputter-deposited MoS2 metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf. Coat. Technol. 127, 24–37 (2000)

    Article  CAS  Google Scholar 

  20. Gangopadhyay, S., Acharya, R., Chattopadhyay, A.K., Paul, S.: Composition and structure-property relationship of low friction, wear resistant TiN-MoSx composite coating deposited by pulsed closed-field unbalanced magnetron sputtering. Surf. Coat. Technol. 203, 1565–1572 (2009)

    Article  CAS  Google Scholar 

  21. Kelly, P.J., Arnell, R.D.: Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000)

    Article  CAS  Google Scholar 

  22. Rooij, A.D.: The oxidation of silver by atomic oxygen. ESA J. 13, 363–382 (1989)

    Google Scholar 

  23. Gao, X., Hu, M., Sun, J., Fu, Y., Yang, J., Weng, L., Liu, W.: Changes in the structure and tribological property of Ag film by LEO space environment exposure. Appl. Surf. Sci. 320, 466–470 (2014)

    Article  CAS  Google Scholar 

  24. Gao, X., Sun, J., Hu, M., Weng, L., Zhou, F., Liu, W.: Improvement of anti-oxidation capability and tribological property of arc ion plated Ag film by alloying with Cu. Appl. Surf. Sci. 257, 7643–7648 (2011)

    Article  CAS  Google Scholar 

  25. Gao, X., Fu, Y., Jiang, D., Wang, D., Weng, L., Yang, J., Sun, J., Hu, M.: Responses of TMDs-metals composite films to atomic oxygen exposure. J. Alloy. Compd. 765, 854–861 (2018)

    Article  CAS  Google Scholar 

  26. Gao, X., Hu, M., Sun, J., Fu, Y., Yang, J., Liu, W., Weng, L.: Response of RF-sputtered MoS2 composite films to LEO space environment. Vacuum 144, 72–79 (2017)

    Article  CAS  Google Scholar 

  27. JCPDS-ICDD: 2003

  28. Lince, J.R.: MoS2–xOx Solid-solutions in thin-films produced by rf-sputter-deposition. J. Mater. Res. 5, 218–222 (1990)

    Article  CAS  Google Scholar 

  29. Deepthi, B., Barshilia, H.C., Rajam, K.S., Konchady, M.S., Pai, D.M., Sankar, J., Kvit, A.V.: Structure, morphology and chemical composition of sputter deposited nanostructured Cr-WS2 solid lubricant coatings. Surf. Coat. Technol. 205, 565–574 (2010)

    Article  CAS  Google Scholar 

  30. Fleischauer, P.D., Lince, J.R.: A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants. Tribol. Int. 32, 627–636 (1999)

    Article  CAS  Google Scholar 

  31. Hilton, M.R., Jayaram, G., Marks, L.D.: Microstructure of cosputter-deposited metal- and oxide-MoS2 solid lubricant thin films. J. Mater. Res. 13, 1022–1032 (1998)

    Article  CAS  Google Scholar 

  32. Thornton, J.A.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666–670 (1974)

    Article  CAS  Google Scholar 

  33. Moser, J., Lévy, F.: Growth mechanisms and near-interface structure in relation to orientation of MoS2 sputtered thin films. J. Mater. Res. 7, 734–740 (1992)

    Article  CAS  Google Scholar 

  34. Hilton, M.R., Fleischauer, P.D.: TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS2 solid lubricant films. J. Mater. Res. 5, 406–421 (1990)

    Article  CAS  Google Scholar 

  35. Barna, P.B., Adamik, M.: Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317, 27–33 (1998)

    Article  CAS  Google Scholar 

  36. Musil, J., Zeman, P., Hrubý, H., Mayrhofer, P.: ZrN/Cu nanocomposite film-a novel superhard material. Surf. Coat. Technol. 120–121, 179–183 (1999)

    Article  Google Scholar 

  37. Scharf, T.W., Rajendran, A., Banerjee, R., Sequeda, F.: Growth, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite thin films. Thin Solid Films 517, 5666–5675 (2009)

    Article  CAS  Google Scholar 

  38. González, V.B., Jones, A.H.S., Hampshire, J., Allen, T.J., Witts, J., Teer, D.G., Ma, K.J., Upton, D.: Tribological behaviour of high performance MoS2 coatings produced by magnetron sputtering. Surf. Coat. Technol. 97, 687–693 (1997)

    Article  Google Scholar 

  39. Vepřek, S., Reiprich, S.: A concept for the design of novel superhard coatings. Thin Solid Films 268, 64–71 (1995)

    Article  Google Scholar 

  40. Vepřek, S., Argon, A.S.: Towards the understanding of mechanical properties of super- and ultrahard nanocomposites. J. Vac. Sci. Technol. B 20, 650–664 (2002)

    Article  Google Scholar 

  41. Vepřek, S., Nesládek, P., Niederhofer, A., Glatz, F., Jílek, M., Šíma, M.: Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness. Surf. Coat. Technol. 108–109, 138–147 (1998)

    Article  Google Scholar 

  42. Diserens, M., Patscheider, J., Lévy, F.: Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 108–109, 241–246 (1998)

    Article  Google Scholar 

  43. Voevodin, A.A., Zabinski, J.S.: Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection. Diam. Relat. Mater. 7, 463–467 (1998)

    Article  CAS  Google Scholar 

  44. Musil, J., Zeman, P.: Structure and microhardness of magnetron sputtered ZrCu and ZrCu-N films. Vacuum 52, 269–275 (1999)

    Article  CAS  Google Scholar 

  45. Musil, J.: Hard and superhard nanocomposite coatings. Surf. Coat. Technol. 125, 322–330 (2000)

    Article  CAS  Google Scholar 

  46. Musil, J., Leipner, I., Kolega, M.: Nanocrystalline and nanocomposite CrCu and CrCu–N films prepared by magnetron sputtering. Surf. Coat. Technol. 115, 32–37 (1999)

    Article  CAS  Google Scholar 

  47. Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol. 116–119, 36–45 (1999)

    Article  Google Scholar 

  48. Fietzke, F., Goedicke, K., Hempel, W.: The deposition of hard crystalline A2O3, layers by means of bipolar pulsed magnetron sputtering. Surf. Coat. Technol. 86–87, 657–663 (1996)

    Article  Google Scholar 

  49. Watanabe, S., Noshiro, J., Miyake, S.: Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf. Coat. Technol. 183, 347–351 (2004)

    Article  CAS  Google Scholar 

  50. Robertson, F.: Knoop hardness numbers for 127 opaque materials. Geol. Soc. Am. Bull. 72, 621–638 (1961)

    Article  CAS  Google Scholar 

  51. Wahl, K.J., Dunn, D.N., Singer, I.L.: Wear behavior of Pb-Mo-S solid lubricating coatings. Wear 230, 175–183 (1999)

    Article  CAS  Google Scholar 

  52. Holmberg, K., Ronkainen, H., Matthews, A.: Tribology of thin coatings. Ceram. Int. 26, 787–795 (2000)

    Article  CAS  Google Scholar 

  53. Ogilvy, J.A.: Predicting the friction and durability of MoS2 coatings using a numerical contact model. Wear 160, 171–180 (1993)

    Article  CAS  Google Scholar 

  54. Simmonds, M.C., Savan, A., Pflüger, E., Swygenhoven, H.V.: Microstructure and tribological performance of MoSx-Au co-sputtered composites. J. Vac. Sci. Technol. A 19, 609–613 (2001)

    Article  CAS  Google Scholar 

  55. Fusaro, R.L., Siebert, M.: Comparison of several different sputtered molybdenum disulfide coatings for use in space applications. NASA/CP-211506 (May 2002)

Download references

Acknowledgements

The authors are grateful for the financial support provided by China National Natural Science Foundation (Grant Nos. 51575508 and 51575509).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ming Hu or Jiayi Sun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Fu, Y., Jiang, D. et al. Structural, Mechanical, and Tribological Properties of WS2-Al Nanocomposite Film for Space Application. Tribol Lett 66, 137 (2018). https://doi.org/10.1007/s11249-018-1085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1085-z

Keywords

Navigation