Advertisement

Tribology Letters

, 66:137 | Cite as

Structural, Mechanical, and Tribological Properties of WS2-Al Nanocomposite Film for Space Application

  • Xiaoming Gao
  • Yanlong Fu
  • Dong Jiang
  • Desheng Wang
  • Jun Yang
  • Lijun Weng
  • Ming Hu
  • Jiayi Sun
Original Paper
  • 124 Downloads

Abstract

In this paper, WS2-Al nanocomposite films were deposited by closed-field unbalanced magnetron sputtering to improve the microstructure and wear resistance of pure WS2 film. Results revealed that pure WS2 film presented a columnar microstructure, but the growth of WS2 platelets could be significantly suppressed by doping Al. Correspondingly, the WS2-Al composite film showed a dense fiber-like microstructure at low Al content (~ 3 at.%) and a featureless one at higher Al content (~ 6–12 at.%). The film densification resulted in a significantly improved hardness from ~ 0.3 GPa for pure WS2 film to 2.9 GPa for WS2-3 at.% Al film and to 4.7–5.7 GPa for WS2 composite films with higher Al contents of ~ 6–12 at.%, but the composite films with higher Al contents were brittle. As a result, only the composite film with Al content of ~ 3 at.% exhibited a much better wear resistance than pure WS2 film. In vacuum environment, the wear life of WS2-3 at.% Al composite film about 1.5 × 106 cycles was much higher than that of pure WS2 film ~ 6.5 × 105 cycles, exhibiting a potential application in space technology.

Keywords

WS2-Al nanocomposite films Microstructure Tribology Vacuum 

Notes

Acknowledgements

The authors are grateful for the financial support provided by China National Natural Science Foundation (Grant Nos. 51575508 and 51575509).

References

  1. 1.
    Briscoe, H.M.: Why space tribology?. Tribol. Int. 23, 67–74 (1990)CrossRefGoogle Scholar
  2. 2.
    Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004)CrossRefGoogle Scholar
  3. 3.
    Tribble, A.C., Lukins, R., Watts, E.: United States and Russian thermal control coating results in low earth orbit. J Spacecr. Rockets 33, 160–166 (1996)CrossRefGoogle Scholar
  4. 4.
    Gouzman, I., Girshevitz, O., Grossman, E., Eliaz, N., Sukenik, C.N.: Thin film oxide barrier layers: protection of kapton from space environment by liquid phase deposition of titanium oxide. ACS Appl. Mater. Interfaces 2, 1835–1843 (2010)CrossRefGoogle Scholar
  5. 5.
    Kannel, J.W., Dufrane, K.F.: Tribology needs for future space and aeronautical systems. NASA Conference Paper 2423, November (1986)Google Scholar
  6. 6.
    Roberts, E.W.: Ultralow friction films of MoS2 for space applications. Thin Solid Films 181, 461–473 (1989)CrossRefGoogle Scholar
  7. 7.
    Spalvins, T.: Frictional and morphological performances of Au-MoS2 films sputtered from a compact target.·Thin. Solid Films 118, 375–384 (1984)CrossRefGoogle Scholar
  8. 8.
    Singh, H., Mutyala, K.C., Evans, R.D., Doll, G.L.: An investigation of material and tribological properties of Sb2O3/Au-doped MoS2 solid lubricant films under sliding and rolling contact in different environments. Surf. Coat. Technol. 284, 281–289 (2015)CrossRefGoogle Scholar
  9. 9.
    Quan, X., Hu, M., Gao, X., Fu, Y., Weng, L., Wang, D., Jiang, D., Sun, J.: Friction and wear performance of dual lubrication systems combining WS2-MoS2 composite film and low volatility oils under vacuum condition. Tribol. Int. 99, 57–66 (2016)CrossRefGoogle Scholar
  10. 10.
    Bülbül, F., Efeoǧlu, İ, Arslan, E.: The effect of bias voltage and working pressure on S/Mo ratio at MoS2-Ti composite films. Appl. Surf. Sci. 253, 4415–4419 (2007)CrossRefGoogle Scholar
  11. 11.
    Ding, X., Zeng, X.T., He, X.Y., Chen, Z.: Tribological properties of Cr- and Ti-doped MoS2 composite coatings under different humidity atmosphere. Surf. Coat. Technol. 205, 224–231 (2010)CrossRefGoogle Scholar
  12. 12.
    Ye, M., Zhang, G., Ba, Y., Wang, T., Wang, X., Liu, Z.: Microstructure and tribological properties of MoS2 + Zr composite coatings in high humidity environment. Appl. Surf. Sci. 367, 140–146 (2016)CrossRefGoogle Scholar
  13. 13.
    Scharf, T.W., Prasad, S.V., Dugger, M.T., Kotula, P.G., Goeke, R.S., Grubbs, R.K.: Growth, structure, and tribological behavior of atomic layer-deposited tungsten disulphide solid lubricant coatings with applications to MEMS. Acta Mater. 54, 4731–4743 (2006)CrossRefGoogle Scholar
  14. 14.
    Michael, E., René, S.: Space mechanisms and tribology challenges of future space missions. Acta Astronaut. 55, 935–943 (2004)CrossRefGoogle Scholar
  15. 15.
    Xu, S., Gao, X., Hu, M., Sun, J., Jiang, D., Wang, D., Zhou, F., Weng, L., Liu, W.: Dependence of atomic oxygen resistance and the tribological properties on microstructures of WS2 film. Appl. Surf. Sci. 298, 36–43 (2014)CrossRefGoogle Scholar
  16. 16.
    Xu, S., Gao, X., Hu, M., Sun, J., Jiang, D., Zhou, F., Liu, W., Weng, L.: Nanostructured WS2-Ni composite films for improved oxidation, resistance and tribological performance. Appl. Surf. Sci. 288, 15–25 (2014)CrossRefGoogle Scholar
  17. 17.
    Xu, S., Gao, X., Hu, M., Sun, J., Wang, D., Zhou, F., Weng, L., Liu, W.: Morphology evolution of Ag alloyed WS2 films and the significantly enhanced mechanical and tribological properties. Surf. Coat. Technol. 238, 197–206 (2014)CrossRefGoogle Scholar
  18. 18.
    Xu, S., Gao, X., Hu, M., Wang, D., Jiang, D., Sun, J., Zhou, F., Weng, L., Liu, W.: Microstructure evolution and enhanced tribological properties of Cu-doped WS2 films. Tribol. Lett. 55, 1–13 (2014)CrossRefGoogle Scholar
  19. 19.
    Renevier, N.M., Fox, V.C., Teer, D.G., Hampshire, J.: Coating characteristics and tribological properties of sputter-deposited MoS2 metal composite coatings deposited by closed field unbalanced magnetron sputter ion plating. Surf. Coat. Technol. 127, 24–37 (2000)CrossRefGoogle Scholar
  20. 20.
    Gangopadhyay, S., Acharya, R., Chattopadhyay, A.K., Paul, S.: Composition and structure-property relationship of low friction, wear resistant TiN-MoSx composite coating deposited by pulsed closed-field unbalanced magnetron sputtering. Surf. Coat. Technol. 203, 1565–1572 (2009)CrossRefGoogle Scholar
  21. 21.
    Kelly, P.J., Arnell, R.D.: Magnetron sputtering: a review of recent developments and applications. Vacuum 56, 159–172 (2000)CrossRefGoogle Scholar
  22. 22.
    Rooij, A.D.: The oxidation of silver by atomic oxygen. ESA J. 13, 363–382 (1989)Google Scholar
  23. 23.
    Gao, X., Hu, M., Sun, J., Fu, Y., Yang, J., Weng, L., Liu, W.: Changes in the structure and tribological property of Ag film by LEO space environment exposure. Appl. Surf. Sci. 320, 466–470 (2014)CrossRefGoogle Scholar
  24. 24.
    Gao, X., Sun, J., Hu, M., Weng, L., Zhou, F., Liu, W.: Improvement of anti-oxidation capability and tribological property of arc ion plated Ag film by alloying with Cu. Appl. Surf. Sci. 257, 7643–7648 (2011)CrossRefGoogle Scholar
  25. 25.
    Gao, X., Fu, Y., Jiang, D., Wang, D., Weng, L., Yang, J., Sun, J., Hu, M.: Responses of TMDs-metals composite films to atomic oxygen exposure. J. Alloy. Compd. 765, 854–861 (2018)CrossRefGoogle Scholar
  26. 26.
    Gao, X., Hu, M., Sun, J., Fu, Y., Yang, J., Liu, W., Weng, L.: Response of RF-sputtered MoS2 composite films to LEO space environment. Vacuum 144, 72–79 (2017)CrossRefGoogle Scholar
  27. 27.
    JCPDS-ICDD: 2003Google Scholar
  28. 28.
    Lince, J.R.: MoS2–xOx Solid-solutions in thin-films produced by rf-sputter-deposition. J. Mater. Res. 5, 218–222 (1990)CrossRefGoogle Scholar
  29. 29.
    Deepthi, B., Barshilia, H.C., Rajam, K.S., Konchady, M.S., Pai, D.M., Sankar, J., Kvit, A.V.: Structure, morphology and chemical composition of sputter deposited nanostructured Cr-WS2 solid lubricant coatings. Surf. Coat. Technol. 205, 565–574 (2010)CrossRefGoogle Scholar
  30. 30.
    Fleischauer, P.D., Lince, J.R.: A comparison of oxidation and oxygen substitution in MoS2 solid film lubricants. Tribol. Int. 32, 627–636 (1999)CrossRefGoogle Scholar
  31. 31.
    Hilton, M.R., Jayaram, G., Marks, L.D.: Microstructure of cosputter-deposited metal- and oxide-MoS2 solid lubricant thin films. J. Mater. Res. 13, 1022–1032 (1998)CrossRefGoogle Scholar
  32. 32.
    Thornton, J.A.: Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J. Vac. Sci. Technol. 11, 666–670 (1974)CrossRefGoogle Scholar
  33. 33.
    Moser, J., Lévy, F.: Growth mechanisms and near-interface structure in relation to orientation of MoS2 sputtered thin films. J. Mater. Res. 7, 734–740 (1992)CrossRefGoogle Scholar
  34. 34.
    Hilton, M.R., Fleischauer, P.D.: TEM lattice imaging of the nanostructure of early-growth sputter-deposited MoS2 solid lubricant films. J. Mater. Res. 5, 406–421 (1990)CrossRefGoogle Scholar
  35. 35.
    Barna, P.B., Adamik, M.: Fundamental structure forming phenomena of polycrystalline films and the structure zone models. Thin Solid Films 317, 27–33 (1998)CrossRefGoogle Scholar
  36. 36.
    Musil, J., Zeman, P., Hrubý, H., Mayrhofer, P.: ZrN/Cu nanocomposite film-a novel superhard material. Surf. Coat. Technol. 120–121, 179–183 (1999)CrossRefGoogle Scholar
  37. 37.
    Scharf, T.W., Rajendran, A., Banerjee, R., Sequeda, F.: Growth, structure and friction behavior of titanium doped tungsten disulphide (Ti-WS2) nanocomposite thin films. Thin Solid Films 517, 5666–5675 (2009)CrossRefGoogle Scholar
  38. 38.
    González, V.B., Jones, A.H.S., Hampshire, J., Allen, T.J., Witts, J., Teer, D.G., Ma, K.J., Upton, D.: Tribological behaviour of high performance MoS2 coatings produced by magnetron sputtering. Surf. Coat. Technol. 97, 687–693 (1997)CrossRefGoogle Scholar
  39. 39.
    Vepřek, S., Reiprich, S.: A concept for the design of novel superhard coatings. Thin Solid Films 268, 64–71 (1995)CrossRefGoogle Scholar
  40. 40.
    Vepřek, S., Argon, A.S.: Towards the understanding of mechanical properties of super- and ultrahard nanocomposites. J. Vac. Sci. Technol. B 20, 650–664 (2002)CrossRefGoogle Scholar
  41. 41.
    Vepřek, S., Nesládek, P., Niederhofer, A., Glatz, F., Jílek, M., Šíma, M.: Recent progress in the superhard nanocrystalline composites: towards their industrialization and understanding of the origin of the superhardness. Surf. Coat. Technol. 108–109, 138–147 (1998)CrossRefGoogle Scholar
  42. 42.
    Diserens, M., Patscheider, J., Lévy, F.: Improving the properties of titanium nitride by incorporation of silicon. Surf. Coat. Technol. 108–109, 241–246 (1998)CrossRefGoogle Scholar
  43. 43.
    Voevodin, A.A., Zabinski, J.S.: Superhard, functionally gradient, nanolayered and nanocomposite diamond-like carbon coatings for wear protection. Diam. Relat. Mater. 7, 463–467 (1998)CrossRefGoogle Scholar
  44. 44.
    Musil, J., Zeman, P.: Structure and microhardness of magnetron sputtered ZrCu and ZrCu-N films. Vacuum 52, 269–275 (1999)CrossRefGoogle Scholar
  45. 45.
    Musil, J.: Hard and superhard nanocomposite coatings. Surf. Coat. Technol. 125, 322–330 (2000)CrossRefGoogle Scholar
  46. 46.
    Musil, J., Leipner, I., Kolega, M.: Nanocrystalline and nanocomposite CrCu and CrCu–N films prepared by magnetron sputtering. Surf. Coat. Technol. 115, 32–37 (1999)CrossRefGoogle Scholar
  47. 47.
    Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol. 116–119, 36–45 (1999)CrossRefGoogle Scholar
  48. 48.
    Fietzke, F., Goedicke, K., Hempel, W.: The deposition of hard crystalline A2O3, layers by means of bipolar pulsed magnetron sputtering. Surf. Coat. Technol. 86–87, 657–663 (1996)CrossRefGoogle Scholar
  49. 49.
    Watanabe, S., Noshiro, J., Miyake, S.: Tribological characteristics of WS2/MoS2 solid lubricating multilayer films. Surf. Coat. Technol. 183, 347–351 (2004)CrossRefGoogle Scholar
  50. 50.
    Robertson, F.: Knoop hardness numbers for 127 opaque materials. Geol. Soc. Am. Bull. 72, 621–638 (1961)CrossRefGoogle Scholar
  51. 51.
    Wahl, K.J., Dunn, D.N., Singer, I.L.: Wear behavior of Pb-Mo-S solid lubricating coatings. Wear 230, 175–183 (1999)CrossRefGoogle Scholar
  52. 52.
    Holmberg, K., Ronkainen, H., Matthews, A.: Tribology of thin coatings. Ceram. Int. 26, 787–795 (2000)CrossRefGoogle Scholar
  53. 53.
    Ogilvy, J.A.: Predicting the friction and durability of MoS2 coatings using a numerical contact model. Wear 160, 171–180 (1993)CrossRefGoogle Scholar
  54. 54.
    Simmonds, M.C., Savan, A., Pflüger, E., Swygenhoven, H.V.: Microstructure and tribological performance of MoSx-Au co-sputtered composites. J. Vac. Sci. Technol. A 19, 609–613 (2001)CrossRefGoogle Scholar
  55. 55.
    Fusaro, R.L., Siebert, M.: Comparison of several different sputtered molybdenum disulfide coatings for use in space applications. NASA/CP-211506 (May 2002)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China

Personalised recommendations