Skip to main content
Log in

A Tribological Study of γ-Fe2O3 Nanoparticles in Aqueous Suspension

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

In this work, the nano- and macroscale tribological properties of maghemite (γ-Fe2O3) nanoparticles in aqueous solution are compared and contrasted for alumina contacts as a function of nanoparticle concentration. A quartz crystal microbalance (QCM) technique was used for nanotribology measurements and a ball-on-disk method was used to measure macroscale friction coefficients. Statistical methods were employed to identify significant associations between the QCM and ball-on-disk measurements, employing selected candidate performance factors for each system. In particular, the macroscale response was parameterized by % reduction in the friction coefficient while candidate QCM “bulk” and “surface” performance factors were selected from functions of the frequency f and resistance Rm shifts upon addition of nanoparticles to the water surrounding the QCM. Incremental increases in concentration were performed and reductions in friction and drag forces were observed for concentrations up to 0.6 wt%, after which further reductions were not observed. The factor δRfilm/δffilm exhibited a linear correlation with the reduction in macroscale friction coefficient, defined as the ratio of the shift in resistance to the shift in frequency attributable to interfacial effects and changes in the glide plane location. Atomic force microscopy was also utilized to both qualitatively and quantitatively determine surface roughness before and after particle uptake, leading to the observations that particles are easily removed from the surface and do not significantly alter surface morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu, H., Zhao, J., Xia, W., Cheng, X., He, A., Hui Wu, A., Yun, J.-H., Wang, L., Huang, H., Jiao, S., Huang, L., Zhang, S., Jiang, Z.: A study of the tribological behaviour of TiO2 nano- additive water-based lubricants Study on tribological behaviour of TiO 2 nano-additive water-based lubricants. Tribol. Int. 109, 398–408 (2017)

    Article  CAS  Google Scholar 

  2. Osawa, E.: Nanodiamond-an emerging nano-carbon material. In: Somiya S. (ed.) Handbook of Advanced Ceramics: Materials, Applications, Processing, and Properties. pp. 89–102. Academic Press, Amsterdam (2013)

    Google Scholar 

  3. Torres-Sanchez, C., Balodimos, N.: Effective and eco-friendly lubrication protocol using nanodiamonds in a dry regime for conveyor systems in the beverage industry. 30, 209–218 (2017). https://doi.org/10.1002/pts.2294

    Article  CAS  Google Scholar 

  4. Betton, C.I.: Lubricants and their environmental impact. In: Chemistry and Technology of Lubricants, pp. 282–298. Springer, Boston (1994)

    Chapter  Google Scholar 

  5. Mortier, R.M., Fox, M.F., Orszulik, S.T.: Chemistry and Technology of Lubricants. Springer Dordrecht (2010)

    Google Scholar 

  6. Dai, W., Liang, H., Kheireddin, B., Gao, H.: Roles of nanoparticles in oil lubrication high-temperature nano-tribology properties of sub-20 nm coatings and thin films view project roles of nanoparticles in oil lubrication. (2017). https://doi.org/10.1016/j.triboint.2016.05.020

    Article  CAS  Google Scholar 

  7. Chiñas-Castillo, F., Spikes, H.A.: Mechanism of action of colloidal solid dispersions. J. Tribol. 125, 552 (2003). https://doi.org/10.1115/1.1537752

    Article  CAS  Google Scholar 

  8. Jacobson, S., Hogmark, S.: Surface modifications in tribological contacts. Wear. 266, 370–378 (2009). https://doi.org/10.1016/j.wear.2008.04.035

    Article  CAS  Google Scholar 

  9. Liu, Z., Leininger, D., Koolivand, A., Smirnov, A.I., Shenderova, O., Brenner, D.W., Krim, J.: Tribological properties of nanodiamonds in aqueous suspensions: effect of the surface charge. RSC Adv. 5, 78933–78940 (2015). https://doi.org/10.1039/C5RA14151F

    Article  CAS  Google Scholar 

  10. Curtis, C.K., Marek, A., Smirnov, A.I., Krim, J.: A comparative study of the nanoscale and macroscale tribological attributes of alumina and stainless steel surfaces immersed in aqueous suspensions of positively or negatively charged nanodiamonds. Beilstein J. Nanotechnol. 8, 2045–2059 (2017). https://doi.org/10.3762/bjnano.8.205

    Article  CAS  Google Scholar 

  11. Acharya, B., Chestnut, M., Marek, A., Smirnov, A.I., Krim, J.: A combined QCM and AFM study exploring the nanoscale lubrication mechanism of silica nanoparticles in aqueous suspension. Tribol. Lett. 65, 115 (2017). https://doi.org/10.1007/s11249-017-0898-5

    Article  CAS  Google Scholar 

  12. Lodge, M.S., Tang, C., Blue, B.T., Hubbard, W.A., Martini, A., Dawson, B.D., Ishigami, M.: Lubricity of gold nanocrystals on graphene measured using quartz crystal microbalance. Sci. Rep. 6, 31837 (2016). https://doi.org/10.1038/srep31837

    Article  CAS  Google Scholar 

  13. Krim, J.: Friction and energy dissipation mechanisms in adsorbed molecules and molecularly thin films. Adv. Phys. 61, 155–323 (2012). https://doi.org/10.1080/00018732.2012.706401

    Article  CAS  Google Scholar 

  14. Song, X., Qiu, Z., Yang, X., Gong, H., Zheng, S., Cao, B., Wang, H., Möhwald, H., Shchukin, D.: Submicron-lubricant based on crystallized Fe3O4 spheres for enhanced tribology performance. Chem. Mater. 26, 5113–5119 (2014). https://doi.org/10.1021/cm502426y

    Article  CAS  Google Scholar 

  15. Barrau, O., Boher, C., Vergne, C., Rezai-Aria, F., Gras, R.: Investigations of friction and wear mechanisms of hot forging tool steels. Karlstad Univ. 1, 81–94 (2002)

    Google Scholar 

  16. Zhou, Y., Wang, S.Q., Chen, W., Jin, Y.X., Wang, L., Chen, K.M., Cui, X.H.: Effect of various nanoparticles on tribo-layers and wear behavior of TC11 alloy. Metall. Mater. Trans. A. 48, 3287–3299 (2017). https://doi.org/10.1007/s11661-017-4131-9

    Article  CAS  Google Scholar 

  17. Colombié, C., Berthier, Y., Floquet, A., Vincent, L., Godet, M.: Fretting: load carrying capacity of wear debris. J. Tribol. 106, 194–201 (1984). https://doi.org/10.1115/1.3260881

    Article  Google Scholar 

  18. Cornell, R.M., Schwertmann, U.: The Iron Oxides. Wiley (2003)

  19. Thünemann, A.F., Schütt, D., Kaufner, L., Pison, U., Möhwald, H.: Maghemite nanoparticles protectively coated with poly(ethylene imine) and poly(ethylene oxide)-block-poly(glutamic acid). Langmuir. 22, 2351–2357 (2006). https://doi.org/10.1021/LA052990D

    Article  Google Scholar 

  20. Jeong, J.R., Lee, S.J., Kim, J.D., Shin, S.C.: Magnetic properties of gamma-Fe2O3 nanoparticles made by coprecipitation method. Phys. Status Solidi Basic Res. 241, 1593–1596 (2004). https://doi.org/10.1002/pssb.200304549

    Article  CAS  Google Scholar 

  21. Halliday, J.S., Hirst, W.: The fretting corrosion of mild steel. Proc. R. Soc. Lond. 236, 411–425 (1956)

    Article  Google Scholar 

  22. Kato, H.: Severe-mild wear transition by supply of oxide particles on sliding surface. Wear. 255, 426–429 (2003). https://doi.org/10.1016/S0043-1648(03)00077-2

    Article  CAS  Google Scholar 

  23. Kato, H., Komai, K.: Tribofilm formation and mild wear by tribo-sintering of nanometer-sized oxide particles on rubbing steel surfaces. Wear. 262, 36–41 (2007). https://doi.org/10.1016/j.wear.2006.03.046

    Article  CAS  Google Scholar 

  24. Jiang, J., Stott, F.H., Stack, M.M.: The role of triboparticles in dry sliding wear. Tribol. Int. 31, 245–256 (1998)

    Article  CAS  Google Scholar 

  25. Stott, F.H., Wood, G.C.: The influence of oxides on the friction and wear of alloys. Tribol. Int. 11, 211–218 (1978). https://doi.org/10.1016/0301-679X(78)90178-0

    Article  CAS  Google Scholar 

  26. Kato, H.: Effects of supply of fine oxide particles onto rubbing steel surfaces on severe-mild wear transition and oxide film formation. Tribol. Int. 41, 735–742 (2008). https://doi.org/10.1016/j.triboint.2008.01.001

    Article  CAS  Google Scholar 

  27. Hu, Z.S., Dong, J.X., Chen, G.X.: Study on antiwear and reducing friction additive of nanometer ferric oxide. Tribol. Int. 31, 355–360 (1998). https://doi.org/10.1016/S0301-679X(98)00042-5

    Article  CAS  Google Scholar 

  28. Iwabuchi, A., Kubosawa, H., Hori, K.: The dependence of the transition from severe to mild wear on load and surface roughness when the oxide particles are supplied before sliding. Wear. 139, 319–333 (1990). https://doi.org/10.1016/0043-1648(90)90054-E

    Article  CAS  Google Scholar 

  29. Iwabuchi, A., Hori, K., Kubosawa, H.: The effect of oxide particles supplied at the interface before sliding on the severe-mild wear transition. Wear. 128, 123–137 (1988). https://doi.org/10.1016/0043-1648(88)90179-2

    Article  CAS  Google Scholar 

  30. Iwabuchi, A.: The role of oxide particles in the fretting wear of mild-steel. Wear. 151, 301–311 (1991). https://doi.org/10.1016/0043-1648(91)90257-u

    Article  CAS  Google Scholar 

  31. Antonov, M., Afshari, H., Baronins, J., Adoberg, E., Raadik, T., Hussainova, I.: The effect of temperature and sliding speed on friction and wear of Si3N4, Al2O3, and ZrO2 balls tested against AlCrN PVD coating. Tribol. Int. 118, 500–514 (2018). https://doi.org/10.1016/j.triboint.2017.05.035

    Article  CAS  Google Scholar 

  32. Parker, D.A.: Ceramics Technology—application to engine components. Proc. Inst. Mech. Eng. Part A. 199, 135–150 (1985). https://doi.org/10.1243/PIME_PROC_1985_199_020_02

    Article  Google Scholar 

  33. Hubbe, M.: Steric Stabilization, https://projects.ncsu.edu/project/hubbepaperchem/Defnitns/StericSt.htm

  34. Napper, D., Netschey, A.: Studies of the steric stabilization of colloidal particles. J. Colloid Interface Sci. 37, 528–535 (1971). https://doi.org/10.1016/0021-9797(71)90330-4

    Article  CAS  Google Scholar 

  35. Lazarowich, R.J., Taborek, P., Yoo, B.-Y., Myung, N.V.: Fabrication of porous alumina on quartz crystal microbalances. J. Appl. Phys. 101, 104909 (2007). https://doi.org/10.1063/1.2730563

    Article  CAS  Google Scholar 

  36. QCM200 Quartz Crystal Microbalance: Digital Controller-QCM25 5 MHz Crystal Oscillator, Revision 2

  37. Qiao, X., Zhang, X., Tian, Y., Meng, Y.: Progresses on the theory and application of quartz crystal microbalance. Appl. Phys. Rev. 3, 031106 (2016). https://doi.org/10.1063/1.4963312

    Article  CAS  Google Scholar 

  38. Pisov, S., Tosatti, E., Tartaglino, U., Vanossi, A.: Gold clusters sliding on graphite: a possible quartz crystal microbalance experiment? J. Phys. Condens. Matter. 19, 305015 (2007). https://doi.org/10.1088/0953-8984/19/30/305015

    Article  CAS  Google Scholar 

  39. Highland, M., Krim, J.: Superconductivity dependent friction of water, nitrogen, and superheated He films adsorbed on Pb(111). Phys. Rev. Lett. 96, 226107 (2006). https://doi.org/10.1103/PhysRevLett.96.226107

    Article  CAS  Google Scholar 

  40. Vlachová, J., König, R., Johannsmann, D.: Stiffness of sphere–plate contacts at MHz frequencies: dependence on normal load, oscillation amplitude, and ambient medium. Beilstein J. Nanotechnol. 6, 845–856 (2015). https://doi.org/10.3762/bjnano.6.87

    Article  CAS  Google Scholar 

  41. Sauerbrey, G.: Use of quartz crystals for weighing thin layers and for weighing. Z. Phys. 155, 206–222 (1959). https://doi.org/10.1007/BF01337937

    Article  CAS  Google Scholar 

  42. Kanazawa, K.K., Gordon, J.G.: Frequency of a quartz microbalance in contact with liquid. Anal. Chem. 57, 1770–1771 (1985). https://doi.org/10.1021/ac00285a062

    Article  CAS  Google Scholar 

  43. Hanke, W., Petri, J., Johannsmann, D.: Partial slip in mesoscale contacts: dependence on contact size. Phys. Rev. E. 88, 1–14 (2013)

    Google Scholar 

  44. Huang, X., Bai, Q., Hu, J., Hou, D.: A practical model of quartz crystal microbalance. Sensors. 17, 1–9 (2017). https://doi.org/10.3390/s17081785

    Article  Google Scholar 

  45. Mishra, P.C., Mukherjee, S., Nayak, S.K., Panda, A.: A brief review on viscosity of nanofluids. Int. Nano Lett. 4, 109–120 (2014). https://doi.org/10.1007/s40089-014-0126-3

    Article  CAS  Google Scholar 

  46. Manikandan, S., Karthikeyan, N., Rajan, K.S.: Viscosity of Fe2O3 nanoparticles dispersion in water and ethylene glycol-water mixture (nanofluids). Int. J. Nanoparticles. 6, 10 (2013). https://doi.org/10.1504/IJNP.2013.051912

    Article  CAS  Google Scholar 

  47. Krim, J., Heyvaert, I., Van Haesendonck, C., Bruynseraede, Y.: Scanning tunneling microscopy observation of self-affine fractal roughness in ion-bombarded film surfaces. Phys. Rev. Lett. 70, 57–60 (1993). https://doi.org/10.1103/PhysRevLett.70.57

    Article  CAS  Google Scholar 

  48. Krim, J., Indekeu, J.O.: Roughness exponents: a paradox resolved. Phys. Rev. E. 48, 1576–1578 (1993). https://doi.org/10.1103/PhysRevE.48.1576

    Article  CAS  Google Scholar 

  49. Palasantzas, G., Krim, J.: Scanning tunneling microscopy study of the thick film limit of kinetic roughening. Phys. Rev. Lett. 73, 3564–3567 (1994). https://doi.org/10.1103/PhysRevLett.73.3564

    Article  CAS  Google Scholar 

  50. Becker, E.: Trends in tribological materials and engine technology. Tribol. Int. 37, 569–575 (2004)

    Article  Google Scholar 

  51. Huang, K., Szlufarska, I.: Friction and slip at solid/liquid interface in vibrational systems Langmuir. 28, 17302–17312 (2012).

    Google Scholar 

  52. Huang, K., Szlufarska, I.: Green-Kubo relation for friction at liquid/solid interface. Physical Rev. E 89, 032119 (2016)

    Google Scholar 

  53. Eklund, E.A., Bruinsma, R., Rudnick, J., Williams, R.S.: Submicron-scale surface roughening induced by ion bombardment. Phys. Rev. Lett. 67, 1759 (1991)

    Article  CAS  Google Scholar 

  54. Adachi, K., Kato, K.: Formation of smooth wear surfaces on alumina ceramics by embedding and tribo-sintering of fine wear particles. Wear. 245, 84–91 (2000). https://doi.org/10.1016/S0043-1648(00)00468-3

    Article  CAS  Google Scholar 

  55. Xue, Q., Liu, W., Zhang, Z.: Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear. 213, 29–32 (1997). https://doi.org/10.1016/S0043-1648(97)00200-7

    Article  CAS  Google Scholar 

  56. Xiang, L., Gao, C., Wang, Y., Pan, Z., Hu, D.: Tribological and tribochemical properties of magnetite nanoflakes as additives in oil lubricants. Particuology. 17, 136–144 (2014). https://doi.org/10.1016/j.partic.2013.09.004

    Article  CAS  Google Scholar 

  57. Sunqing, Q., Junxiu, D., Guoxu, C.: Wear and friction behaviour of CaCO3 nanoparticles used as additives in lubricating oils. Lubr. Sci. 12, 205–212 (2000). https://doi.org/10.1002/ls.3010120207

    Article  Google Scholar 

  58. Coles, J.M., Chang, D.P., Zauscher, S.: Molecular mechanisms of aqueous boundary lubrication by mucinous glycoproteins. Curr. Opin. Colloid Interface Sci. 15, 406–416 (2010). https://doi.org/10.1016/j.cocis.2010.07.002

    Article  CAS  Google Scholar 

  59. Krim, J., Widom, A.: Damping of a crystal oscillator by an adsorbed monolayer and its relation to interfacial viscosity. Phys. Rev. B 38, 12184 (1988)

    Article  CAS  Google Scholar 

  60. Bruschi, L., Mistura, G.: Measurement of the friction of thin films by means of a quartz microbalance in the presence of a finite vapor pressure. Phys. Rev. B 63, 235411 (2001)

    Article  Google Scholar 

  61. Popov, V.L.: Coulomb’s law of friction. In: Contact Mechanics of Friction. p. 134 (2010)

  62. Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Electrotunable friction with ionic liquid lubricants: how important is the molecular structure of the ions? https://doi.org/10.1021/acs.jpclett.5b01802

    Article  CAS  Google Scholar 

  63. Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Electrotunable lubricity with ionic liquid nanoscale films. https://doi.org/10.1038/srep07698

Download references

Acknowledgements

This work was supported by National Science Foundation Award Number DMR1535082.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Krim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pardue, T.N., Acharya, B., Curtis, C.K. et al. A Tribological Study of γ-Fe2O3 Nanoparticles in Aqueous Suspension. Tribol Lett 66, 130 (2018). https://doi.org/10.1007/s11249-018-1083-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1083-1

Keywords

Navigation