Molecular Dynamics Simulation Study of Mechanical Effects of Lubrication on a Nanoscale Contact Process

Abstract

Using molecular dynamics simulation, we study the effect of a lubricant on indentation and scratching of a Fe surface. By comparing a dry reference case with two lubricated contacts—differing in the adsorption strength of the lubricant—the effects of the lubricant can be identified. We find that after an initial phase, in which the lubricant is squeezed out of the contact zone, the contact between the indenter and the substrate is essentially dry. The number of lubricant molecules confined in the tip-substrate gap increases with the lubricant adsorption energy. Trapped lubricant broadens the tip area active in the scratching process—mainly on the flanks of the groove—compared to a dry reference case. This leads to a slight increase in chip height and volume, and also contributes to the scratching forces.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Maekawa, K., Itoh, A.: Friction and tool wear in nano-scale machining: a molecular dynamics approach. Wear 188, 115 (1995)

    CAS  Article  Google Scholar 

  2. 2.

    Komanduri, R., Chandrasekaran, N., Raff, L.: A review on the molecular dynamics simulation of machining at the atomic scale. Proc. Inst. Mech. Eng. B 215, 1639 (2001)

    Article  Google Scholar 

  3. 3.

    Alhafez, I., Brodyanski, A., Kopnarski, M., Urbassek, H.: Influence of tip geometry on nanoscratching. Tribol. Lett. 65(26), 1 (2017)

    Google Scholar 

  4. 4.

    Gao, Y., Lu, C., Huynh, N., Michal, G., Zhu, H., Tieu, A.: Molecular dynamics simulation of effect of indenter shape on nanoscratching of Ni. Wear 267, 1998 (2009)

    CAS  Article  Google Scholar 

  5. 5.

    Alhafez, I., Urbassek, H.: Scratching of hcp metals: a molecular-dynamics study. Comput. Mater. Sci. 113, 187 (2016)

    Article  Google Scholar 

  6. 6.

    Gao, Y., Ruestes, C., Urbassek, H.: Nanoindentation and nanoscratching of iron: atomistic simulation of dislocation generation and reactions. Comput. Mater. Sci. 90, 232 (2014)

    CAS  Article  Google Scholar 

  7. 7.

    Wu, C., Fang, T., Lin, J.: Atomic-scale simulations of material behaviors and tribology properties for FCC and BCC metal films. Mater. Lett. 80, 59 (2012)

    CAS  Article  Google Scholar 

  8. 8.

    Gao, Y., Ruestes, C.J., Tramontina, D.R., Urbassek, H.M.: Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Solids 75(Supplement C), 58 (2015). https://doi.org/10.1016/j.jmps.2014.11.005

    CAS  Article  Google Scholar 

  9. 9.

    Gao, Y., Urbassek, H.: Scratching of nanocrystalline metals: a molecular dynamics study of Fe. Appl. Surf. Sci. 389, 688 (2016)

    CAS  Article  Google Scholar 

  10. 10.

    Zhang, L., Zhao, H., Yang, Y., Huang, H., Ma, Z., Shao, M.: Evaluation of repeated single-point diamond turning on the deformation behavior of monochrystalline silicon via molecular dynamics simulation. Appl. Phys. A 116, 141–150 (2014)

    CAS  Article  Google Scholar 

  11. 11.

    Li, Y., Goyal, A., Chernatynski, A., Jayashanker, J., Kautzky, M., Sinnott, S., Phillpot, S.: Nanoindentation of gold and gold alloys by molecular dynamics simulations. Mater. Sci. Eng. A 651, 346 (2016)

    CAS  Article  Google Scholar 

  12. 12.

    Aristizibal, H., Parra, P., Lpez, P., Restrepo-Parra, E.: Atomistic-scale simulations of material behaviors and tribology properties for BCC metal films. Chin. Phys. B 25, 010204 (2016)

    Article  Google Scholar 

  13. 13.

    Gao, Y., Brodyanski, A., Kopnarski, M., Urbassek, H.: Nanoscratching of iron: a molecular dynamics study of the influence of surface orientation and scratching direction. Comput. Mater. Sci. 103, 77 (2015)

    CAS  Article  Google Scholar 

  14. 14.

    Israelachvili, J.: Intermolecular and Surface Forces, 3rd edn. Academic Press, San Diego (2011)

    Google Scholar 

  15. 15.

    Szlufarska, I., Chandross, M., Carpick, R.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)

    Article  Google Scholar 

  16. 16.

    Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 512 (2013)

    Article  Google Scholar 

  17. 17.

    Müser, M.: Theory and simulation of friction and lubrication. Lect. Notes Phys. 704, 65 (2006)

    Article  Google Scholar 

  18. 18.

    Zheng, X., Zhu, H., Tieu, A., Kosasih, B.: A molecular dynamics simulation of 3d rough lubricated contact. Tribol. Int. 67, 217 (2013)

    CAS  Article  Google Scholar 

  19. 19.

    Zheng, X., Zhu, H., Kosasih, B., Tieu, A.: A molecular dynamics simulation of boundary lubrication: the effect of \(n\)-alkanes chain length and normal load. Wear 301, 62 (2013)

    CAS  Article  Google Scholar 

  20. 20.

    Sivebaek, I., Persson, B.: The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity. Nanotechnology 27, 445401 (2016)

    CAS  Article  Google Scholar 

  21. 21.

    Ren, J., Zhao, J., Dong, Z., Liu, P.: Molecular dynamics study on the mechanism of afm-based nanoscratching process with water-layer lubrication. Appl. Surf. Sci. 346, 84 (2015)

    CAS  Article  Google Scholar 

  22. 22.

    Chen, R., Liang, M., Luo, J., Lei, H., Guo, D., Hu, X.: Comparison of surface damage under the dry and wet impact: molecular dynamics simulation. Appl. Surf. Sci. 258, 1756 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    Tang, C., Zhang, L.: A molecular dynamics analysis of the mechanical effect of water on the deformation of silicon monocrystals subjected to nano-indentation. Nanotechnology 16, 15 (2005)

    CAS  Article  Google Scholar 

  24. 24.

    Chen, Y., Han, H., Fang, F., Hu, X.: Md simulation of nanometric cutting of copper with and without water lubrication. Sci. China 57, 1154 (2014)

    CAS  Article  Google Scholar 

  25. 25.

    Chandross, M., Lorenz, C., Stevens, M., Grest, G.: Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240 (2008)

    CAS  Article  Google Scholar 

  26. 26.

    An, R., Huang, L., Long, Y., Kalanyan, B., Lu, X., Gubbins, K.: Liquid-soild nanofriction and interfacial wetting. Langmuir 32, 743 (2015)

    Article  Google Scholar 

  27. 27.

    Shi, J., Zhang, Y., Sun, K., Fang, L.: Effect of water film on the plastic deformation of monocrystalline copper. RSC Adv. 6, 96824 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    Jeng, Y., Tsai, P., Liu, Y.: Adsorbed multilayer effects on the mechanical properties in nanometer indentation depth. Mater. Res. Bull. 44, 1995 (2009)

    CAS  Article  Google Scholar 

  29. 29.

    Lee, W., Ju, S., Cheng, C.: A molecular dynamics study of nanoindentation on a methyl methacrylate ultrathin film on a Au (111) substrate: interface and thickness effects. Langmuir 24, 13440 (2008)

    CAS  Article  Google Scholar 

  30. 30.

    Yang, F., Carpick, R., Srolovitz, D.: Mechanics of contact, adhesion and failure of metallic nanoasperites in the presence of adsorbates: toward conductive contact design. ACS Nano 11, 490 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    Dai, L., Sorkin, V., Zhang, Y.: Effect of surface chemistry on the mechanics and governing laws of friction and wear. ACS Appl. Mater. Interf. 8, 8765 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    Shiari, B., Miller, R., Klug, D.: Multiscale simulation of material removal processes at the nanoscale. J. Mech. Phys. Solids 55, 2384 (2007)

    CAS  Article  Google Scholar 

  33. 33.

    Greiner, C., Felts, J., Dai, Z., King, R., Carpick, W.P.: Controlling nanoscale friction through th competition between capillary adsorption and thermally activated sliding. ACS Nano 6(5), 4305 (2012)

    CAS  Article  Google Scholar 

  34. 34.

    O’Shea, S., Gosvami, N., Lim, L., Hofbauer, W.: Liquid atomic force microscopy: solvation forces, molecular order, and squeeze-out, Japanese. J. Appl. Phys. 49, 08LA01 (2010)

    Google Scholar 

  35. 35.

    Cihan, E., Ipek, S., Baykara, M.: Structural lubricity under ambient conditions. Nat. Commun. 7, 12055 (2016)

    CAS  Article  Google Scholar 

  36. 36.

    Rentsch, R., Inasaki, I.: Effects of fluids on the surface generation in material removal processes—molecular dynamics simulation -. Ann. CIRP 55, 601604 (2006)

    Article  Google Scholar 

  37. 37.

    Lautenschlaeger, M., Stephan, S., Urbassek, H., Kirsch, B., Aurich, J., Horsch, M., Hasse, H.: Effects of lubrication on the friction in nanometric machining processes: a molecular dynamics approach. Appl. Mech. Mater. 869, 85 (2017). https://doi.org/10.4028/www.scientific.net/AMM.869.85

    Article  Google Scholar 

  38. 38.

    Lautenschlaeger, M., Stephan, S., Horsch, M., Kirsch, B., Aurich, J., Hasse, H.: Effects of lubrication on the friction and heat transfer in machining processes on the nanoscale: a molecular dynamics approach. Proc. CRIP 67, 296–301 (2014)

    Article  Google Scholar 

  39. 39.

    Tartaglino, U., Sivebaek, I., Persson, B., Tosatti, E.: Impact of molecular structure on the lubrication squeeze-out between curved surfaces with long range elasticity. J. Chem. Phys. 125, 014704 (2006)

    CAS  Article  Google Scholar 

  40. 40.

    Allen, M., Tildesley, D.: Computer Simulation of Liquids. Oxford University Press, New York (2009)

    Google Scholar 

  41. 41.

    Hou, H., Zhang, Y., Li, Z., Jiang, T., Zhang, J., Xu, C.: Numerical analysis of entropy production on a lng cryogenic submerged pump. J. Nat. Gas Sci. Eng. 36, 87 (2016). https://doi.org/10.1016/j.jngse.2016.10.017

    CAS  Article  Google Scholar 

  42. 42.

    Bahadori, A.: In: Mokhatab, S., Mak, J.Y., Valappil, J.V., Wood, D.A. (eds.) Handbook of Liquefied Natural Gas, pp. 147–183. Gulf Professional Publishing, Boston (2014). https://doi.org/10.1016/B978-0-12-404585-9.00003-9

    Google Scholar 

  43. 43.

    Bill, R.C., Wisander, D.: Recrystallization as a controlling process in the wear of some F.C.C. metals. Wear 41(2), 351 (1977). https://doi.org/10.1016/0043-1648(77)90013-8

    CAS  Article  Google Scholar 

  44. 44.

    Wisander, D.W.: Friction and wear of selected metals and alloys in sliding contact with aisi 440c stainless steel in liquid methane and in liquid natural gas. NASA Tech. Rep. 1150, 1 (1978)

    Google Scholar 

  45. 45.

    Kanda, T., Sato, M., Kimura, T., Asakawa, H.: Expander and coolant-bleed cycles of methane-fueled rocket engines. Trans. Jpn. Soc. Aeronaut. Space Sci. 61(3), 106 (2018). https://doi.org/10.2322/tjsass.61.106

    Article  Google Scholar 

  46. 46.

    Collins, J., Hurlbert, E., Romig, K., Melcher, J., Hobson, A., Eaton, P.: Sea-level flight demonstration and altitude characterization of a LO2/LCH4 based ascent propulsion lander. In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference proceedings 45, 4948 (2009). https://doi.org/10.2514/6.2009-4948

  47. 47.

    Cao, F., Deetz, J.D., Sun, H.: Free energy-based coarse-grained force field for binary mixtures of hydrocarbons, nitrogen, oxygen, and carbon dioxide. J. Inform. Model. 57(1), 50 (2017). https://doi.org/10.1021/acs.jcim.6b00685. PMID: 28029243

    CAS  Article  Google Scholar 

  48. 48.

    Brinksmeier, E., Aurich, J., Goveka, E., Heinzel, C., Hoffmeister, H., Klocke, F., Peters, J., Rentsch, R., Stephenson, D., Uhlmann, E., Weinert, K., Wittmann, M.: Advances in modeling and simulation of grinding processes. Ann. CIRP 55, 667 (2006)

    Article  Google Scholar 

  49. 49.

    Yildiz, Y., Nalbant, M.: A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 48, 947 (2008). https://doi.org/10.1016/j.ijmachtools.2008.01.008

    Article  Google Scholar 

  50. 50.

    Becker, S., Urbassek, H., Horsch, M., Hasse, H.: Contact angle of sessile drops in Lennard-Jones systems. Langmuir 30, 13606 (2014)

    CAS  Article  Google Scholar 

  51. 51.

    Becker, S., Kohns, M., Urbassek, H.M., Horsch, M., Hasse, H.: Static and dynamic wetting behavior of drops on impregnated structured walls by molecular dynamics simulation. J. Physi. Chem. C 121(23), 12669 (2017). https://doi.org/10.1021/acs.jpcc.6b12741

    CAS  Article  Google Scholar 

  52. 52.

    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984). https://doi.org/10.1063/1.448118

    CAS  Article  Google Scholar 

  53. 53.

    Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83(35), 3977 (2003). https://doi.org/10.1080/14786430310001613264

    CAS  Article  Google Scholar 

  54. 54.

    Vrabec, J., Kedia, G.K., Fuchs, G., Hasse, H.: Comprehensive study of the vapour-liquid coexistence of the truncated and shifted Lennard-Jones fluid including planar and spherical interface properties. Mol. Phys. 104, 1509 (2006)

    CAS  Article  Google Scholar 

  55. 55.

    Banerjee, S., Naha, S., Puri, I.K.: Molecular simulation of the carbon nanotube growth mode during catalytic synthesis. Appl. Phys. Lett. 92(23), 233121 (2008). https://doi.org/10.1063/1.2945798

    CAS  Article  Google Scholar 

  56. 56.

    Weeks, J.D., Chandler, D., Andersen, H.C.: Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54(12), 5237 (1971). https://doi.org/10.1063/1.1674820

    CAS  Article  Google Scholar 

  57. 57.

    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)

    CAS  Article  Google Scholar 

  58. 58.

    Stukowski, A., Albe, K.: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18(8), 085001 (2010). https://doi.org/10.1088/0965-0393/18/1/015012. http://www.ovito.org/

    Article  Google Scholar 

  59. 59.

    Henderson, A.: Paraview guide, a parallel visualization application. Kitware Inc. (2007). http://www.paraview.org

  60. 60.

    Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E.W., Camp, D., Rübel, O., Durant, M., Favre, J.M., Navrátil, P.: In: High Performance Visualization–Enabling Extreme-Scale Scientific Insightm pp. 357–372 (2012)

  61. 61.

    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010). https://doi.org/10.1088/0965-0393/18/1/015012. http://www.ovito.org/

    Article  Google Scholar 

  62. 62.

    Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inform. Theory 29(4), 551 (1983). https://doi.org/10.1109/TIT.1983.1056714

    Article  Google Scholar 

  63. 63.

    Yong, X., Zhang, L.T.: Slip in nanoscale shear flow: mechanisms of interfacial friction. Microfluid. Nanofluid. 14(1–2), 299 (2013). https://doi.org/10.1007/s10404-012-1048-x

    Article  Google Scholar 

  64. 64.

    Thompson, P.A.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360 (1997)

    CAS  Article  Google Scholar 

  65. 65.

    Bhushan, B., Israelachvili, J., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607 (1995)

    CAS  Article  Google Scholar 

  66. 66.

    Stoyanov, P., Merz, R., Romero, P., Whlisch, F.C., Abad, O.T., Gralla, R., Stemmer, P., Kopnarski, M., Moseler, M., Bennewitz, R., Dienwiebel, M.: Surface softening in metal–ceramic sliding contacts: an experimental and numerical investigation. Am. Chem. Soc Nano 9, 1478 (2015)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the DFG within IRTG 2057 Physical Modeling for Virtual Manufacturing Systems and Processes and CRC 926 Microscale Morphology of Component Surfaces. The simulations were carried out on the HAZELHEN at High Performance Computing Center Stuttgart (HLRS), on the ELWE at Regional University Computing Center Kaiserslautern (RHRK) under the grant TUKL-TLMV as well as on the SUPERMUC at Leibniz Supercomputing Centre (LRZ) Garching within the computing project SPARLAMPE (pr48te). The present research was conducted under the auspices of the Boltzmann-Zuse Society of Computational Molecular Engineering (BZS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Stephan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stephan, S., Lautenschlaeger, M.P., Alhafez, I.A. et al. Molecular Dynamics Simulation Study of Mechanical Effects of Lubrication on a Nanoscale Contact Process. Tribol Lett 66, 126 (2018). https://doi.org/10.1007/s11249-018-1076-0

Download citation

Keywords

  • Nanoindentation
  • Lubrication
  • Molecular dynamics
  • Single asperity contact
  • Squeeze-out