Skip to main content
Log in

Tribological Behaviour of Plasma-Functionalized Graphene as Low-Viscosity Oil Additive

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

The influence of plasma functionalization of multilayer graphene (MG) as an additive for low-viscosity polyolester (POE) oil in terms of dispersion stability and tribological behaviour was investigated. Pure MG and MG functionalized via N2 and NH3 plasma were analysed. The plasma functionalization significantly improved the substrate wettability and the dispersion stability of the nanofluids. The tribological behaviour of the nanofluids was investigated using a reciprocating cylinder on plane configuration. 0.05 wt% of the functionalized nanoparticles dramatically increased the scuffing resistance and significantly improved the anti-wear properties of the POE oil (over 60% wear reduction). Optical microscopy, white light interferometry, scanning electron microscopy and micro-Raman spectroscopy were used to identify the wear mechanisms. The functionalization provides a well-dispersed suspension, which contributes to the formation of a continuous and homogeneous anti-wear tribofilm. Once between the sliding surfaces, the MG improves the load-carrying capacity of the oil, avoiding the seizure of the tribolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ohmae, N., Martin, J.M.: Nanolubricants. Wiley, London (2008)

  2. Tang, Z., Li, S.: A review of recent developments of friction modifiers for liquid lubricants (2007–present). Curr. Opin. Solid State Mater. Sci. 18, 119–139 (2014). https://doi.org/10.1016/j.cossms.2014.02.002

    Article  Google Scholar 

  3. Abate, F., D’Agostino, V., Giuda, R., Di Senatore, A.: Tribological behaviour of MoS2 and inorganic fullerene-like WS2 nanoparticles under boundary and mixed lubrication regimes. Tribol. Surf. Interfaces. 4, 91–98 (2010). https://doi.org/10.1179/175158310X12678019274282

    Article  Google Scholar 

  4. Moshkovith, A., Perfiliev, V., Verdyan, A., Lapsker, I., Popovitz-Biro, R., Tenne, R., Rapoport, L.: Sedimentation of IF-WS2 aggregates and a reproducibility of the tribological data. Tribol. Int. 40, 117–124 (2007). https://doi.org/10.1016/j.triboint.2006.02.067

    Article  Google Scholar 

  5. Greenberg, R., Halperin, G., Etsion, I., Tenne, R.: The effect of WS 2 nanoparticles on friction reduction in various lubrication regimes. Tribol. Lett. 17, 179–186 (2004)

    Article  Google Scholar 

  6. Rapoport, L., Nepomnyashchy, O., Lapsker, I., Verdyan, A., Moshkovich, A., Feldman, Y., Tenne, R.: Behavior of fullerene-like WS2 nanoparticles under severe contact conditions. Wear. 259, 703–707 (2005). https://doi.org/10.1016/j.wear.2005.01.009

    Article  Google Scholar 

  7. Tontini, G., Bernardi, C., Semione, G.D.L., Binder, R., de Mello, J.D.B., Drago, V.: Synthesis of nanostructured flower-like MoS2 and its friction properties as additive in lubricating oils. Ind. Lubrif. Tribol. 68, 658–664 (2016). https://doi.org/10.1108/ILT-12-2015-0194

    Article  Google Scholar 

  8. Mosleh, M., Atnafu, N.D., Belk, J.H., Nobles, O.M.: Modification of sheet metal forming fluids with dispersed nanoparticles for improved lubrication. Wear. 267, 1220–1225 (2009). https://doi.org/10.1016/j.wear.2008.12.074

    Article  Google Scholar 

  9. Taylor, P., Çelik, O.N., Ay, N., Göncü, Y.: Effect of nano hexagonal boron nitride lubricant additives on the friction and wear properties of AISI 4140 steel. Part. Sci. Technol. 31, 501–506 (2014). https://doi.org/10.1080/02726351.2013.779336

    Google Scholar 

  10. Talib, N., Nasir, R.M., Rahim, E.A.: Tribological behaviour of modified jatropha oil by mixing hexagonal boron nitride nanoparticles as a bio-based lubricant for machining processes. J. Clean. Prod. 147, 360–378 (2017). https://doi.org/10.1016/j.jclepro.2017.01.086

    Article  Google Scholar 

  11. Nunn, N., Mahbooba, Z., Ivanov, M.G., Ivanov, D.M., Brenner, D.W., Shenderova, O.: Tribological properties of polyalphaolefin oil modified with nanocarbon additives. Diam. Relat. Mater. 54, 97–102 (2015). https://doi.org/10.1016/j.diamond.2014.09.003

    Article  Google Scholar 

  12. Cornelio, J.A.C., Cuervo, P.A., Hoyos-Palacio, L.M., Lara-Romero, J., Toro, A.: Tribological properties of carbon nanotubes as lubricant additive in oil and water for a wheel–rail system. J. Mater. Res. Technol. 5, 68–76 (2016). https://doi.org/10.1016/j.jmrt.2015.10.006

    Article  Google Scholar 

  13. Xing, M., Wang, R., Yu, J.: Application of fullerene C 60 nano-oil for performance enhancement of domestic refrigerator compressors. Int. J. Refrig. 40, 398–403 (2013). https://doi.org/10.1016/j.ijrefrig.2013.12.004

    Article  Google Scholar 

  14. Zhang, Z.J., Simionesie, D., Schaschke, C.: Graphite and hybrid nanomaterials as lubricant additives. Lubricants. 2, 44–65 (2014). https://doi.org/10.3390/lubricants2020044

    Article  Google Scholar 

  15. Huang, H.D., Tu, J.P., Gan, L.P., Li, C.Z.: An investigation on tribological properties of graphite nanosheets as oil additive. Wear. 261, 140–144 (2006). https://doi.org/10.1016/j.wear.2005.09.010

    Article  Google Scholar 

  16. Ismail, N.A., Bagheri, S.: Highly oil-dispersed functionalized reduced graphene oxide nanosheets as lube oil friction modifier. Mater. Sci. Eng. B. 222, 34–42 (2017). https://doi.org/10.1016/j.mseb.2017.04.010

    Article  Google Scholar 

  17. Chouhan, A., Mungse, H.P., Sharma, O.P., Singh, R.K., Khatri, O.P.: Chemically functionalized graphene for lubricant applications: Microscopic and spectroscopic studies of contact interfaces to probe the role of graphene for enhanced tribo-performance. J. Colloid Interface Sci. 513, 666–676 (2018). https://doi.org/10.1016/j.jcis.2017.11.072

    Article  Google Scholar 

  18. Sanes, J., Avilés, M.D., Saurín, N., Espinosa, T., Carrión, F.J., Bermúdez, M.D.: Synergy between graphene and ionic liquid lubricant additives. Tribol. Int. 116, 371–382 (2017). https://doi.org/10.1016/j.triboint.2017.07.030

    Article  Google Scholar 

  19. Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today. 17, 31–42 (2014). https://doi.org/10.1016/j.mattod.2013.12.003

    Article  Google Scholar 

  20. Penkov, O., Kim, H.J., Kim, H.J., Kim, D.E.: Tribology of graphene: A review. Int. J. Precis. Eng. Manuf. 15, 577–585 (2014). https://doi.org/10.1007/s12541-014-0373-2

    Article  Google Scholar 

  21. Filleter, T., Mcchesney, J.L., Bostwick, A., Rotenberg, E., Emtsev, K.V., Seyller, T., Horn, K., Bennewitz, R.: Friction and dissipation in epitaxial graphene films. Phys. Rev. Lett. 102, 1–4 (2009). https://doi.org/10.1103/PhysRevLett.102.086102

    Article  Google Scholar 

  22. Spear, J.C., Ewers, B.W., Batteas, J.D.: 2D-nanomaterials for controlling friction and wear at interfaces. Nano Today. 10, 301–314 (2015). https://doi.org/10.1016/j.nantod.2015.04.003

    Article  Google Scholar 

  23. Bianco, A., Cheng, H.-M., Enoki, T., Gogotsi, Y., Hurt, R.H., Koratkar, N., Kyotani, T., Monthioux, M., Park, C.R., Tascon, J.M.D., Zhang, J.: All in the graphene family – A recommended nomenclature for two-dimensional carbon materials. Carbon N. Y. 65, 1–6 (2013). https://doi.org/10.1016/j.carbon.2013.08.038

    Article  Google Scholar 

  24. Senatore, A., D’Agostino, V., Petrone, V., Ciambelli, P., Sarno, M.: Graphene oxide nanosheets as effective friction modifier for oil lubricant: materials, methods, and tribological results. ISRN Tribol. (2013) https://doi.org/10.5402/2013/425809

    Google Scholar 

  25. Lin, J., Wang, L., Chen, G.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011). https://doi.org/10.1007/s11249-010-9702-5

    Article  Google Scholar 

  26. Choudhary, S., Mungse, H.P., Khatri, O.P.: Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. J. Mater. Chem. 22, 21032–21039 (2012). https://doi.org/10.1039/c2jm34741e

    Article  Google Scholar 

  27. Johnson, D.W., Dobson, B.P., Coleman, K.S.: A manufacturing perspective on graphene dispersions. Curr. Opin. Colloid Interface Sci. 20, 367–382 (2015). https://doi.org/10.1016/j.cocis.2015.11.004

    Article  Google Scholar 

  28. Fan, X., Wang, L.: High-performance lubricant additives based on modified graphene oxide by ionic liquids. J. Colloid Interface Sci. 452, 98–108 (2015). https://doi.org/10.1016/j.jcis.2015.04.025

    Article  Google Scholar 

  29. Moshkovith, A., Perfiliev, V., Lapsker, I., Fleischer, N., Tenne, R., Rapoport, L.: Friction of fullerene-like WS2 nanoparticles: Effect of agglomeration. Tribol. Lett. 24, 225–228 (2006). https://doi.org/10.1007/s11249-006-9124-6

    Article  Google Scholar 

  30. Hu, Y., Sun, X.: Chemically functionalized graphene and their applications in electrochemical energy conversion and storage. Adv. Graphene Sci. (2013). https://doi.org/10.5772/51689

    Google Scholar 

  31. Walters, I., Willians, M.: Graphite nanoplatelets, composites comprising them, preparation and uses thereof. Pat. n. EP 3000849A1. (2015)

  32. Zheng, D., Cai, Z., Shen, M., Li, Z., Zhu, M.: Investigation of the tribology behaviour of the graphene nanosheets as oil additives on textured alloy cast iron surface. Appl. Surf. Sci. 387, 66–75 (2016). https://doi.org/10.1016/j.apsusc.2016.06.080

    Article  Google Scholar 

  33. Sarno, M., Senatore, A., Cirillo, C., Petrone, V., Ciambelli, P.: Oil lubricant tribological behaviour improvement through dispersion of few layer graphene oxide. J. Nanosci. Nanotechnol. 14, 4960–4968 (2014). https://doi.org/10.1166/jnn.2014.8673

    Article  Google Scholar 

  34. Kubiak, K.J., Wilson, M.C.T., Mathia, T.G., Carval, P.: Wettability versus roughness of engineering surfaces. Wear. 271, 523–528 (2011). https://doi.org/10.1016/j.wear.2010.03.029

    Article  Google Scholar 

  35. Wojciechowski, L., Kubiak, K.J., Mathia, T.G.: Roughness and wettability of surfaces in boundary lubricated scuffing wear. Tribol. Int. 93, 593–601 (2016). https://doi.org/10.1016/j.triboint.2015.04.013

    Article  Google Scholar 

  36. Wang, H., Wang, C., Fu, J., Gu, G.: Wetting behavior and mechanism of wetting agents on low-energy surface. Colloids Surf. A. 424, 10–17 (2013). https://doi.org/10.1016/j.colsurfa.2013.01.063

    Article  Google Scholar 

  37. Van Oss, C.J., Good, R.J., Chaudhury, M.K.: Additive and nonadditive surface tension components and the interpretation of contact angles. Langmuir. 4, 884–891 (1988). https://doi.org/10.1021/la00082a018

    Article  Google Scholar 

  38. Guo, B., Liu, Q., Chen, E., Zhu, H., Fang, L., Gong, J.R.: Controllable N-Doping of Graphene. Nano Lett. 10, 4975–4980 (2010). https://doi.org/10.1021/nl103079j

    Article  Google Scholar 

  39. de Mello, J.D.B., Binder, C., Binder, R., Klein, A.N.: Effect of precursor content and sintering temperature on the scuffing resistance of sintered self lubricating steel. Wear. 271, 1862–1867 (2011). https://doi.org/10.1016/j.wear.2010.11.038

    Article  Google Scholar 

  40. Cui, T., Lv, R., Huang, Z., Zhu, H., Jia, Y., Chen, S., Wang, K., Wu, D., Kang, F.: Low-temperature synthesis of multilayer graphene/amorphous carbon hybrid films and their potential application in solar cells. Nanoscale Res. Lett. 7, 453 (2012). https://doi.org/10.1186/1556-276X-7-453

    Article  Google Scholar 

  41. Eswaraiah, V., Sankaranarayanan, V., Ramaprabhu, S.: Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interfaces. (2011). https://doi.org/10.1021/am200851z

    Google Scholar 

  42. Mohsin, A., Liu, L., Liu, P., Deng, W., Ivanov, I.N., Li, G., Dyck, O.E., Duscher, G.: Synthesis of millimeter-size hexagon-shaped graphene single crystals on resolidified copper. Am. Chem. Soc. 7, 8924–8931 (2013). https://doi.org/10.1021/nn4034019

    Google Scholar 

  43. Ferrari, A.C.: Raman spectroscopy of graphene and graphite: Disorder, electron – phonon coupling, doping and nonadiabatic effects. Solid State Commun. 143, 47–57 (2007). https://doi.org/10.1016/j.ssc.2007.03.052

    Article  Google Scholar 

  44. Socrates, G.: Infrared and Raman Characteristic Group Frequencies: Tables and Charts. Wiley, Chichester (2004)

    Google Scholar 

  45. Larkin, P.: Infrared and Raman Spectroscopy: Principles and Spectral Interpretation. Elsevier, Stamford (2012)

    Google Scholar 

  46. Bai, G., Wang, J., Yang, Z., Wang, H., Wang, Z., Yang, S.: Preparation of a highly effective lubricating oil additive—ceria/graphene composite. RSC Adv. 4, 47096–47105 (2014). https://doi.org/10.1039/C4RA09488C

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Brazilian agency CAPES and EMBRACO for their financial support. The research was supported by LABMAT – UFSC, LABMOSS – UFSC and LCME – UFSC.

Funding

This work was funded by the Brazilian Federal Agency for Support and Evaluation of Graduate Education (CAPES—Grant no. 087/99), Whirlpool SA- Embraco (Grant No. 945) and the Brazilian Development Bank (BNDS—Grant No. 946).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Bordignon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordignon, R., Salvaro, D., Binder, C. et al. Tribological Behaviour of Plasma-Functionalized Graphene as Low-Viscosity Oil Additive. Tribol Lett 66, 114 (2018). https://doi.org/10.1007/s11249-018-1065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1065-3

Keywords

Navigation