Skip to main content

Tribological Interaction of Plasma-Functionalized Polytetrafluoroethylene Nanoparticles with ZDDP and Ionic Liquids

Abstract

Polytetrafluoroethylene (PTFE) nanoparticles were coated with consecutive plasma deposited siliceous and methacrylate coatings. Secondary zinc dialkyldithiophosphate (ZDDP), phosphonium cation and phosphate anion ionic liquid (IL), and IL with phosphonium cation and dithiophosphate anion were mixed with the functionalized nanoparticles. Tribological studies were carried out for seven separate formulations including base oil, oils with only additives, and oils with additives and functionalized PTFE particles. Results indicate strong synergistic interactions of ZDDP and ILs with functionalized nanoparticles providing enhanced friction and wear performance. Chemical analysis of the tribofilms using X-ray photoelectron spectroscopy and X-ray absorption near edge structure spectroscopy indicates functionalized PTFE nanoparticles interact synergistically with ZDDP and ILs to form silicon- and fluorine-doped tribofilms resulting in superior tribological performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Syed, R.: A Comprehensive review of lubricant chemistry, technology, selection, and Design. ASTM International, West Conshohocken (2009)

    Google Scholar 

  2. Barnes, A.M., Bartle, K.D., Thibon, V.R.A.: A review of zinc dialkyldithiophosphates (ZDDPS): characterization and role in the lubricating oil. Tribol. Int. 34, 389–395 (2001)

    Article  Google Scholar 

  3. Willermet, P.A.: Some engine oil additives and their effects on antiwear film formation. Tribol. Lett. 5, 41–47 (1998)

    Article  Google Scholar 

  4. Martin, J.M., Onodera, T., Minfray, C., Dassenoy, F., Miyamoto, A.: The origin of anti-wear chemistry of ZDDP. Faraday Discuss. 156, 311–323 (2012)

    Article  Google Scholar 

  5. Barnes, A.M., Bartle, K.D., Thibon, V.R.A.: A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil. Tribol. Int. 34, 389–395 (2001)

    Article  Google Scholar 

  6. Fujita, H., Spikes, H.A.: The formation of zinc dithiophosphate antiwear films. Proc. Inst. Mech. Eng. Part J. 218, 265–277 (2004)

    Article  Google Scholar 

  7. Spikes, H.A.: The history and mechanisms of ZDDP. Tribol. Lett. 17, 469–489 (2004)

    Article  Google Scholar 

  8. Varlot, K., Kasrai, M., Martin, J.M., Vacher, B., Bancroft, G.M., Yamaguchi, E.S., et al.: Antiwear film formation of neutral and basic ZDDP: influence of the reaction temperature and of the concentration. Tribol. Lett. 8, 9–16 (2000)

    Article  Google Scholar 

  9. Mourhatch, R., Aswath, P.B.: Tribological behavior and nature of tribofilms generated from fluorinated ZDDP in comparison to ZDDP under extreme pressure conditions—Part 1: structure and chemistry of tribofilms. Tribol. Int. 44, 187–200 (2011)

    Article  Google Scholar 

  10. Lin, Y.C., So, H.: Limitations on use of ZDDP as an antiwear additive in boundary lubrication. Tribol. Int. 37, 25–33 (2004)

    Article  Google Scholar 

  11. Williamson, W.B., Perry, J., Gandhi, H.S., Bomback, J.L.: Effects of oil phosphorus on deactivation of monolithic three-way catalysts. Appl. Catal. 15, 277–292 (1985)

    Article  Google Scholar 

  12. Angelo, B., Kirchner, K.: The poisoning of noble metal catalysts by phosphorus compounds- chemical processes, mechanisms and changes in the catalyst. Chem. Eng. Sci. 35, 2089–2091 (1980)

    Article  Google Scholar 

  13. Phillips, W.D.. Ashless phosphorous-containing lubricating oil additives. In: Rudnick LR (ed.) Lubricant Additives-Chemisty and Applications, 2nd Edition, Chemical Industries 124, pp. 63–121. CRC Press, Danvers, MA (2009)

    Chapter  Google Scholar 

  14. Kim, B., Sharma, V., Aswath, P.B.: Chemical and mechanistic interpretation of thermal films formed by dithiophosphates using XANES. Tribol. Int. 114, 15–26 (2017)

    Article  Google Scholar 

  15. Chen, X., Elsenbaumer, R.L., Aswath, P.B.: Synthesis and tribological behavior of ashless alkylphosphorofluoridothioates. Tribol. Int. 69, 114–124 (2013)

    Article  Google Scholar 

  16. Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9, 3209–3222 (2017)

    Article  Google Scholar 

  17. González, R., Bartolomé, M., Blanco, D., Viesca, J., Fernández-González, A., Battez, A.H.: Effectiveness of phosphonium cation-based ionic liquids as lubricant additive. Tribol. Int. 98, 82–93 (2016)

    Article  Google Scholar 

  18. Otero, I., López, E.R., Reichelt, M., Villanueva, M., Salgado, J., Fernández, J.: Ionic liquids based on phosphonium cations as neat lubricants or lubricant additives for a steel/steel contact. ACS Appl. Mater. Interfaces 6, 13115–13128 (2014)

    Article  Google Scholar 

  19. Sharma, V., Dorr, N., Erdemir, A., Aswath, P.: Interaction of phosphonium ionic liquids with borate esters at tribological interfaces. RSC Adv. 6, 53148–53161 (2016)

    Article  Google Scholar 

  20. Shah, F.U., Glavatskih, S., Antzutkin, O.N.: Boron in tribology: from borates to ionic liquids. Tribol. Lett. 51, 281–301 (2013)

    Article  Google Scholar 

  21. Taher, M., Shah, F.U., Filippov, A., de Baets, P., Glavatskih, S., Antzutkin, O.N.: Halogen-free pyrrolidinium bis (mandelato) borate ionic liquids: some physicochemical properties and lubrication performance as additives to polyethylene glycol. RSC Adv. 4, 30617–30623 (2014)

    Article  Google Scholar 

  22. Shen, G., Zheng, Z., Wan, Y., Xu, X., Cao, L., Yue, Q., et al.: Synergistic lubricating effects of borate ester with heterocyclic compound. Wear 246, 55–58 (2000)

    Article  Google Scholar 

  23. Demas, N.G., Erck, R.A., Lorenzo-Martin, C., Ajayi, O.O., Fenske, G.R.: Experimental evaluation of oxide nanoparticles as friction and wear improvement additives in motor oil. J. Nanomater. 2017 (2017). Article ID 8425782

  24. Bakunin, V.N., Suslov, A.Y., Kuzmina, G.N., Parenago, O.P., Topchiev, A.V.: Synthesis and application of inorganic nanoparticles as lubricant components-a review. J. Nanopart. Res. 6, 273–284 (2004)

    Article  Google Scholar 

  25. Zhmud, B., Pasalskiy, B.: Nanomaterials in lubricants: an industrial perspective on current research. Lubricants 1:95–101 (2013)

    Article  Google Scholar 

  26. Anand, G., Saxena, P.: A review on graphite and hybrid nano-materials as lubricant additives. In: IOP Conference Series: Materials Science and Engineering 149:012201 (2016)

  27. Salah, N., Abdel-wahab, M.S., Alshahrie, A., Alharbi, N.D., Khan, Z.H.: Carbon nanotubes of oil fly ash as lubricant additives for different base oils and their tribology performance. RSC Adv. 7:40295

    Article  Google Scholar 

  28. Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1666 (2005)

    Article  Google Scholar 

  29. Li, X., Cao, Z., Zhang, Z., Dang, H.: Surface-modification in situ of nano-SiO2 and its structure and tribological properties. Appl. Surf. Sci. 252, 7856–7861 (2006)

    Article  Google Scholar 

  30. Yang, G., Chai, S., Xiong, X., Zhang, S., Yu L., Zhang P.: Preparation and tribological properties of surface modified Cu nanoparticles. Trans. Nonferrous Metals Soc. China 22, 366–372 (2012)

    Article  Google Scholar 

  31. Kong, L., Sun, J., Bao, Y.: Preparation, characterization and tribological mechanism of nanofluids. RSC Adv. 7:12599

    Article  Google Scholar 

  32. Landauer, A.K., Barnhill, W.C., Qu, J.: Correlating mechanical properties and anti-wear performance of tribofilms formed by ionic liquids, ZDDP and their combinations. Wear 354, 78–82 (2016)

    Article  Google Scholar 

  33. Qu, J., Barnhill, W.C., Luo, H., Meyer, H.M., Leonard, D.N., Landauer, A.K., et al.: Synergistic effects between phosphonium-alkylphosphate ionic liquids and zinc dialkyldithiophosphate (ZDDP) as lubricant additives. Adv. Mater. 27, 4767–4774 (2015)

    Article  Google Scholar 

  34. Zhang, L., Pu, J., Wang, L., Xue, Q.: Synergistic effect of hybrid carbon nanotube–graphene oxide as nanoadditive enhancing the frictional properties of ionic liquids in high vacuum. ACS Appl. Mater. Interfaces 7, 8592–8600 (2015)

    Article  Google Scholar 

  35. Fox, M., Priest, M.: Tribological properties of ionic liquids as lubricants and additives. Part 1: synergistic tribofilm formation between ionic liquids and tricresyl phosphate. Proc. Inst. Mech. Eng. Part J. 222, 291–303 (2008)

    Article  Google Scholar 

  36. Morina, A., Neville, A., Priest, M., Green, J.H.: ZDDP and MoDTC interactions and their effect on tribological performance–tribofilm characteristics and its evolution. Tribol. Lett. 24, 243–256 (2006)

    Article  Google Scholar 

  37. Bakunin, V.N., Kasrai, M., Kuzmina, G.N., Bancroft, G.M., Parenago, O.P.: Influence of temperature and ZDDP concentration on tribochemistry of surface-capped molybdenum sulfide nanoparticles studied by XANES spectroscopy. Tribol. Lett. 26, 33–43 (2007)

    Article  Google Scholar 

  38. Tomala, A., Vengudusamy, B., Rodríguez Ripoll, M., Naveira Suarez, A., Remškar, M., Rosentsveig, R.: Interaction between selected MoS2 nanoparticles and ZDDP tribofilms. Tribol. Lett. 59, 26 (2015)

    Article  Google Scholar 

  39. Aldana, P.U., Vacher, B., Le Mogne, T., Belin, M., Thiebaut, B., Dassenoy, F.: Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime. Tribol. Lett. 56, 249–258 (2014)

    Article  Google Scholar 

  40. Sharma, V., Timmons, R., Erdemir, A., Aswath, P.B.: Plasma-functionalized polytetrafluoroethylene nanoparticles for improved wear in lubricated contact. ACS Appl. Mater. Interfaces 9, 25631–25641 (2017)

    Article  Google Scholar 

  41. Warren, O.L., Graham, J.F., Norton, P.R., Houston, J.E., Michalske, T.A.: Nanomechanical properties of films derived from zinc dialkyldithiophosphate. Tribol. Lett. 4, 189–198 (1998)

    Article  Google Scholar 

  42. Onyiriuka, E.C.: Zinc phosphate glass surfaces studied by XPS. J. Non-Cryst. Solids 163, 268–273 (1993)

    Article  Google Scholar 

  43. Wagner, C., Muilenberg, G.: Handbook of X-ray Photoelectron Spectroscopy. Perkin-Elmer, Waltham, (1979)

    Google Scholar 

  44. Wang, Y., Sherwood, P.M.A.: Iron (III) phosphate (FePO4) by XPS. Surf. Sci. Spectra 9, 99–105 (2002)

    Article  Google Scholar 

  45. Gonzalez, Y., Lafont, M.C., Pebere, N., Chatainier, G., Roy, J., Bouissou, T.: A corrosion inhibition study of a carbon steel in neutral chloride solutions by zinc salt/phosphonic acid association. Corros. Sci. 37, 1823–1837 (1995)

    Article  Google Scholar 

  46. Totolin, V., Minami, I., Gabler, C., Dörr, N.: Halogen-free borate ionic liquids as novel lubricants for tribological applications. Tribol. Int. 67, 191–198 (2013)

    Article  Google Scholar 

  47. Tang, Y., Guan, X., Wang, J., Gao, N., McPhail, M.R., Chusuei, C.C.: Fluoride adsorption onto granular ferric hydroxide: effects of ionic strength, pH, surface loading, and major co-existing anions. J. Hazard. Mater. 171, 774–779 (2009)

    Article  Google Scholar 

  48. Yu, X., Day, D.E., Long, G.J., Brow, R.K.: Properties and structure of sodium-iron phosphate glasses. J. Non-Cryst. Solids 215, 21–31 (1997)

    Article  Google Scholar 

  49. Meisel, A., Leonhardt, G., Szargan, R., Källne, E.: X-ray Spectra and Chemical Binding. Springer, Berlin, 1989

    Book  Google Scholar 

  50. Sharma, V., Erdemir, A., Aswath, P.B.: An analytical study of tribofilms generated by the interaction of ashless antiwear additives with ZDDP using XANES and nano-indentation. Tribol. Int. 82, 43–57 (2015)

    Article  Google Scholar 

  51. Mourhatch, R., Aswath, P.B.: Tribological behavior and nature of tribofilms generated from fluorinated ZDDP in comparison to ZDDP under extreme pressure conditions—Part II: morphology and nanoscale properties of tribofilms. Tribol. Int. 44, 201–210 (2011)

    Article  Google Scholar 

  52. Harp, G., Han, Z., Tonner, B.: X-ray absorption near edge structures of intermediate oxidation states of silicon in silicon oxides during thermal desorption. J. Vac. Sci. Technol. A 8, 2566–2569 (1990)

    Article  Google Scholar 

  53. Li, D., Bancroft, G.M., Kasrai, M., Fleet, M.E., Feng, X.H., Tan, K.H.: High-resolution Si and P K- and L-edge XANES spectra of crystalline SiP2O7 and amorphous SiO2-P2O5. Am. Mineral. 79, 785–788 (1994)

    Google Scholar 

  54. Najman, M.N., Kasrai, M., Bancroft, G.M., Frazer, B.H., DeStatio, G.: The correlation of microchemical properties to antiwear (AW) performance in ashless thiophosphate oil additives. Tribol. Lett. 17(4), 811–822 (2004)

    Article  Google Scholar 

  55. Sharma, V., Gabler, C., Doerr, N., Aswath, P.B.: Mechanism of tribofilm formation with P and S containing ionic liquids. Tribol. Int. 92, 353–364 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

XANES experiments were conducted at the Canadian Light Source, Saskatoon, Saskatchewan, Canada that is supported by NSERC, NRC, CIHR, and the University of Saskatchewan. Tribological tests were performed at Argonne National Laboratory. X-ray Photoelectron Spectroscopy facilities provided by the Department of Chemistry are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pranesh B. Aswath.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, V., Johansson, J., Timmons, R.B. et al. Tribological Interaction of Plasma-Functionalized Polytetrafluoroethylene Nanoparticles with ZDDP and Ionic Liquids. Tribol Lett 66, 107 (2018). https://doi.org/10.1007/s11249-018-1060-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1060-8

Keywords

  • Additives
  • Ionic liquids: tribofilms
  • XANES