Skip to main content
Log in

Thixotropic Mechanics in Soft Hydrated Sliding Interfaces

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Soft hydrated permeable surfaces exhibit unique lubrication behaviors, including recently discovered frictional hysteresis. This duration-dependent frictional effect can be analogous to the thixotropic fluid response under shear-driven Couette flow. We illustrate torque-speed hysteresis loops using tribo-rheometry measurements between an aluminum annulus and polyacrylamide surface. Frictional torque response was measured under stepwise sliding speed increments at five different step durations. The torque-sliding speed curves exhibit hysteresis loops and the shape of the hysteresis loops depends on step durations. Longer duration shows greater hysteresis with higher average friction. Torque curves at highest speeds converge to one line with a power law exponent of α = 0.7. Based on the experimental data, a hydrogel lubrication model was developed using a thixotropic fluid model, where viscosity change is described as a competition between structural buildup and breakdown. Simulation using the model correlates well with the experimental results, indicating the existence of effective structural change on the hydrogel surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, G.W: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 12, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  2. Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter. 13, 428–435 (2017). https://doi.org/10.1039/C6SM02111E

    Article  Google Scholar 

  3. McGhee, E.O., Pitenis, A.A., Urueña, J.M., Schulze, K.D., McGhee, A.J., O’Bryan, C.S., Bhattacharjee, T., Angelini, T.E., Sawyer, G.W: In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology. 13, 23–29 (2017). https://doi.org/10.1016/j.biotri.2017.12.002

    Article  Google Scholar 

  4. Kim, J., Dunn, A.C.: Soft hydrated sliding interfaces as complex fluids. Soft Matter. 12, 6536–6546 (2016). https://doi.org/10.1039/C6SM00623J

    Article  Google Scholar 

  5. Gong, J.P.: Friction and lubrication of hydrogels? its richness and complexity. Soft Matter. 2, 544 (2006). https://doi.org/10.1039/b603209p

    Article  Google Scholar 

  6. Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54, 59–66 (2014). https://doi.org/10.1007/s11249-014-0308-1

    Article  Google Scholar 

  7. Sudre, G., Hourdet, D., Cousin, F., Creton, C., Tran, Y.: Structure of surfaces and interfaces of poly(N,N-dimethylacrylamide) hydrogels. Langmuir. 28, 12282–12287 (2012). https://doi.org/10.1021/la301417x

    Article  Google Scholar 

  8. Denisin, A.K., Pruitt, B.L.: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016). https://doi.org/10.1021/acsami.5b09344

    Article  Google Scholar 

  9. Chen, L.B., Zukoski, C.F., Ackerson, B.J., Hanley, H.J.M., Straty, G.C., Barker, J., Glinka, C.J.: Structural changes and orientational order in a sheared colloidal suspension. Phys. Rev. Lett. 69, 688–693 (1992). https://doi.org/10.1103/PhysRevLett.69.688

    Article  Google Scholar 

  10. Perret, D., Locat, J., Martignoni, P.: Thixotropic behavior during shear of a fine-grained mud from Eastern Canada. Eng. Geol. 43, 31–44 (1996). https://doi.org/10.1016/0013-7952(96)00031-2

    Article  Google Scholar 

  11. Divoux, T., Grenard, V., Manneville, S.: Rheological hysteresis in soft glassy materials. Phys. Rev. Lett. 110, 018304 (2013). https://doi.org/10.1103/PhysRevLett.110.018304

    Article  Google Scholar 

  12. Barnes, H.H.A., Barnes, A.: Thixotropy—a review. J. Non-Newtonian Fluid Mech. 70, 1–33 (1997). https://doi.org/10.1016/S0377-0257(97)00004-9

    Article  Google Scholar 

  13. Mewis, J., Wagner, N.J.: Thixotropy. Adv. Colloid Interface Sci. 147–148, 214–227 (2009). https://doi.org/10.1016/j.cis.2008.09.005

    Article  Google Scholar 

  14. Wei, Y., Solomon, M.J., Larson, R.G.: Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows. J. Rheol. 60, 1301–1315 (2016). https://doi.org/10.1122/1.4965228

    Article  Google Scholar 

  15. Toorman, E.A.: Modelling the thixotropic behaviour of dense cohesive sediment suspensions. Rheol. Acta. 36, 56–65 (1997). https://doi.org/10.1007/BF00366724

    Article  Google Scholar 

  16. Sestak, J., Zitny, R., Houska, M.: Simple rheological models of food liquids for process design and quality assessment. J. Food Eng. 2, 35–49 (1983). https://doi.org/10.1016/0260-8774(83)90005-5

    Article  Google Scholar 

  17. Pitenis, A.A., Urueña, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter. 10, 8955–8962 (2014). https://doi.org/10.1039/C4SM01728E

    Article  Google Scholar 

  18. Kii, A., Xu, J., Gong, J.P., Osada, Y., Zhang, X.: Heterogeneous polymerization of hydrogels on hydrophobic substrates. J. Phys. Chem. B. 105, 4565–4571 (2001). https://doi.org/10.1021/jp003242u

    Article  Google Scholar 

  19. Kurokawa, T., Gong, J.P., Osada, Y.: Substrate effect on topographical, elastic, and frictional properties of hydrogels. Macromolecules. 35, 8161–8166 (2002). https://doi.org/10.1021/ma020453j

    Article  Google Scholar 

  20. Moore, A.C., Burris, D.L.: Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr. Cartil. 25, 99–107 (2017). https://doi.org/10.1016/j.joca.2016.09.018

    Article  Google Scholar 

  21. Zhang, J., Daubert, C.R., Foegeding, E.A.: Characterization of polyacrylamide gels as an elastic model for food gels. Rheol. Acta. 44, 622–630 (2005). https://doi.org/10.1007/s00397-005-0444-5

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSF Award Number 1563087. The authors are grateful for helpful conversations and resources from Randy Ewoldt, Jonathon Schuh, and Anthony Margotta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison C. Dunn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Dunn, A.C. Thixotropic Mechanics in Soft Hydrated Sliding Interfaces. Tribol Lett 66, 102 (2018). https://doi.org/10.1007/s11249-018-1056-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1056-4

Keywords

Navigation