Skip to main content
Log in

Insight into the Viscous and Adhesive Contributions to Hydrogel Friction

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Investigation of the mechanisms underlying hydrogel lubrication is pivotal in understanding the complexity of biolubrication. In this work, the frictional characteristics of poly(acrylamide) hydrogels with varying composition have been studied over a wide range of sliding velocities and normal loads by colloidal probe lateral force microscopy. The results show that the friction force between the hydrogel and the colloid increases with velocity at sliding velocities above a transition value (\({V^*}\)), while the friction force at slower sliding velocities depends on the composition, and it can either increase or decrease with velocity. Based on the viscoelastic behavior of hydrogels, we model hydrogel friction as the combination of viscous dissipation and the energy dissipated through the rupture of the transient adhesive bridges across the interface. The model parameters depend on relaxation characteristics of the confined polymer network at the interface and on the (bulk) viscoelastic behavior of the hydrogel and are sensitive to the compressive stress. We observe a collapse of the experimental data (at different loads and velocities and for hydrogels with different compositions) in a non-monotonic master curve with a minimum friction force at the transition velocity. Furthermore, a simple relation for the transition velocity \({V^*}\) is derived from theory, thereby demonstrating the competing effect of both the adhesive and the viscous contributions to friction, which helps to reconcile discrepancies between previous studies of hydrogel friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Dowson, D.: Bio-tribology. Faraday Discuss. 156, 9–30 (2012). https://doi.org/10.1039/c2fd20103h.

    Article  Google Scholar 

  2. Sterner, O., Karageorgaki, C., Zurcher, M., Zurcher, S., Scales, C.W., Fadli, Z., Spencer, N.D., Tosatti, S.G.P.: Reducing friction in the eye: a comparative study of lubrication by surface-anchored synthetic and natural ocular mucin analogues. ACS Appl. Mater. Interfaces. 9(23), 20150–20160 (2017). https://doi.org/10.1021/acsami.6b16425

    Article  Google Scholar 

  3. Pult, H., Tosatti, S.G., Spencer, N.D., Asfour, J.M., Ebenhoch, M., Murphy, P.J.: Spontaneous blinking from a tribological viewpoint. Ocul. Surf. 13(3), 236–249 (2015). https://doi.org/10.1016/j.jtos.2014.12.004

    Article  Google Scholar 

  4. Samsom, M., Chan, A., Iwabuchi, Y., Subbaraman, L., Jones, L., Schmidt, T.A.: In vitro friction testing of contact lenses and human ocular tissues: effect of proteoglycan 4 (PRG4). Tribol. Int. 89, 27–33 (2015). https://doi.org/10.1016/j.triboint.2014.11.022

    Article  Google Scholar 

  5. Dunn, A.C., Urueña, J.M., Puig, E., Perez, V.L., Sawyer, W.G.: Friction coefficient measurement of an in vivo murine cornea. Tribol. Lett. 49(1), 145–149 (2012). https://doi.org/10.1007/s11249-012-0033-6

    Article  Google Scholar 

  6. Dunn, A.C., Cobb, J.A., Kantzios, A.N., Lee, S.J., Sarntinoranont, M., Tran-Son-Tay, R., Sawyer, W.G.: Friction coefficient measurement of hydrogel materials on living epithelial cells. Tribol. Lett. 30(1), 13–19 (2008). https://doi.org/10.1007/s11249-008-9306-5

    Article  Google Scholar 

  7. Faust, T.: Coordination driven gelation. Nat. Chem. 7(9), 681–681 (2015). https://doi.org/10.1038/nchem.2339

    Article  Google Scholar 

  8. Pan, Y., Xiong, D.: Friction properties of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as an articular cartilage. Wear. 266(7–8), 699–703 (2009). https://doi.org/10.1016/j.wear.2008.08.012

    Article  Google Scholar 

  9. Gong, J., Iwasaki, Y., Osada, Y., Kurihara, K., Hamai, Y.: Friction of gels. 3. Friction on solid surfaces. J. Phys. Chem. B. 103(29), 6001–6006 (1999). https://doi.org/10.1021/jp9902553

    Article  Google Scholar 

  10. Chang, D.P., Dolbow, J.E., Zauscher, S.: Switchable friction of stimulus-responsive hydrogels. Langmuir. 23(1), 250–257 (2007). https://doi.org/10.1021/la0617006

    Article  Google Scholar 

  11. Pan, Y.-S., Xiong, D.-S., Ma, R.-Y.: A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear. 262(7–8), 1021–1025 (2007). https://doi.org/10.1016/j.wear.2006.10.005

    Article  Google Scholar 

  12. Kim, S.H., Opdahl, A., Marmo, C., Somorjai, G.A.: AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials. 23(7), 1657–1666 (2002). https://doi.org/10.1016/s0142-9612(01)00292-7

    Article  Google Scholar 

  13. Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter. 13(2), 428–435 (2017). https://doi.org/10.1039/c6sm02111e

    Article  Google Scholar 

  14. Gong, J., Osada, Y.: Gel friction: A model based on surface repulsion and adsorption. J. Chem. Phys. 109(18), 8062–8068 (1998). https://doi.org/10.1063/1.477453

    Article  Google Scholar 

  15. Kurokawa, T., Tominaga, T., Katsuyama, Y., Kuwabara, R., Furukawa, H., Osada, Y., Gong, J.P.: Elastic-hydrodynamic transition of gel friction. Langmuir. 21(19), 8643–8648 (2005). https://doi.org/10.1021/la050635h

    Article  Google Scholar 

  16. Kagata, G., Gong, J.P., Osada, Y.: Friction of gels. 6. Effects of sliding velocity and viscoelastic responses of the network. J. Phys. Chem. B. 106(18), 4596–4601 (2002). https://doi.org/10.1021/jp012380w

    Article  Google Scholar 

  17. Ohsedo, Y., Takashina, R., Gong, J.P., Osada, Y.: Surface friction of hydrogels with well-defined polyelectrolyte brushes. Langmuir 20(16), 6549–6555 (2004). https://doi.org/10.1021/la036211&%23x002B;

    Article  Google Scholar 

  18. Schallamach, A.: A theory of dynamic rubber friction. Wear. 6(5), 375–382 (1963). https://doi.org/10.1016/0043-1648(63)90206-0

    Article  Google Scholar 

  19. Gong, J.P.: Friction and lubrication of hydrogels—its richness and complexity. Soft Matter. 2(7), 544–552 (2006). https://doi.org/10.1039/b603209p

    Article  Google Scholar 

  20. Li, A., Ramakrishna, S.N., Kooij, E.S., Espinosa-Marzal, R.M., Spencer, N.D.: Poly(acrylamide) films at the solvent-induced glass transition: adhesion, tribology, and the influence of crosslinking. Soft Matter. 8(35), 9092–9100 (2012). https://doi.org/10.1039/c2sm26222c

    Article  Google Scholar 

  21. Kim, S.H., Marmo, C., Somorjai, G.A.: Friction studies of hydrogel contact lenses using AFM: non-crosslinked polymers of low friction at the surface. Biomaterials. 22(24), 3285–3294 (2001). https://doi.org/10.1016/s0142-9612(01)00175-2

    Article  Google Scholar 

  22. Li, A., Benetti, E.M., Tranchida, D., Clasohm, J.N., Schönherr, H., Spencer, N.D.: Surface-grafted, covalently cross-linked hydrogel brushes with tunable interfacial and bulk properties. Macromolecules. 44(13), 5344–5351 (2011). https://doi.org/10.1021/ma2006443

    Article  Google Scholar 

  23. Gong, J.P., Kurokawa, T., Narita, T., Kagata, G., Osada, Y., Nishimura, G., Kinjo, M.: Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc.. 123(23), 5582–5583 (2001). https://doi.org/10.1021/ja003794q

    Article  Google Scholar 

  24. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses and the friction of gelatin gels. Eur. Phys. J. E. 11(1), 85–93 (2003). https://doi.org/10.1140/epje/i2003-10009-7

    Article  Google Scholar 

  25. Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 1–2, 24–29 (2015). https://doi.org/10.1016/j.biotri.2015.03.001

    Article  Google Scholar 

  26. Pitenis, A.A., Manuel Urueña, J., Nixon, R.M., Bhattacharjee, T., Krick, B.A., Dunn, A.C., Angelini, T.E., Sawyer, G.: W.: Lubricity from entangled polymer networks on hydrogels. J. Tribol. 138(4), 042102 (2016). https://doi.org/10.1115/1.4032889

    Article  Google Scholar 

  27. Sokoloff, J.B.: Theory of hydrostatic lubrication for two like-charge polymer hydrogel coated surfaces. Soft Matter 6(16) (2010). https://doi.org/10.1039/c000252f

  28. Gong, J.P., Kagata, G., Osada, Y.: Friction of gels. 4. Friction on charged gels. J. Phys. Chem. B 103(29), 6007–6014 (1999)

    Article  Google Scholar 

  29. Shoaib, T., Heintz, J., Lopez-Berganza, J.A., Muro-Barrios, R., Egner, S.A., Espinosa-Marzal, R.M.: Stick-slip friction reveals hydrogel lubrication mechanisms. Langmuir. 34(3), 756–765 (2018). https://doi.org/10.1021/acs.langmuir.7b02834

    Article  Google Scholar 

  30. Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. Royal Soc. A. 274(1356), 21–39 (1963). https://doi.org/10.1098/rspa.1963.0112

    Article  Google Scholar 

  31. Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18(4), 499–504 (2005)

    Article  Google Scholar 

  32. Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88(7), 075509 (2002). https://doi.org/10.1103/PhysRevLett.88.075509

    Article  Google Scholar 

  33. Tse, J.R., Engler, A.J.: Preparation of hydrogel substrates with tunable mechanical properties. Current Protocols in Cell Biology Chap. 10, Unit. 10 16 (2010). https://doi.org/10.1002/0471143030.cb1016s47

  34. Cannara, R.J., Eglin, M., Carpick, R.W.: Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 77(5), 053701 (2006)

    Article  Google Scholar 

  35. Pabst, W., Gregorová, E.V.A.: Elastic properties of silica polymorphs—a review. Ceram. Silik. 57(3), 167–184 (2013)

    Google Scholar 

  36. Hertz, H.: Über die Berührung fester elastischer Körper. Reine Angewandte Mathematik 92, 156–171 (1881)

    Google Scholar 

  37. Ramakrishna, S.N., Cirelli, M., Divandari, M., Benetti, E.M.: Effects of lateral deformation by thermoresponsive polymer brushes on the measured friction forces. Langmuir. 33(17), 4164–4171 (2017). https://doi.org/10.1021/acs.langmuir.7b00217

    Article  Google Scholar 

  38. Gautreau, Z., Griffin, J., Peterson, T., Thongpradit, P.: Characterizing viscoelastic properties of polyacrylamide gels. Worcester Polytechnic Institute, Worcester (2006)

    Google Scholar 

  39. Resnikoff, J.I.N.: The role of extracellular matrix composition and mechanical properties in driving cardiac differentiation of mesenchymal stem cells. (2012)

  40. Schallamach, A.: How does rubber slide? Wear 17(4), 301–312 (1971)

    Article  Google Scholar 

  41. Drummond, C., Israelachvili, J., Richetti, P.: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E. 67(6 Pt 2), 066110 (2003). https://doi.org/10.1103/PhysRevE.67.066110

    Article  Google Scholar 

  42. Dhinojwala, A., Cai, L., Granick, S.: Critique of the friction coefficient concept for wet (lubricated) sliding. Langmuir 12(19), 4537–4542 (1996)

    Article  Google Scholar 

  43. Demirci, U., Khademhosseini, A.: Gels handbook: Fundamentals, properties and applications (in 3 volumes). World scientific, (2016)

  44. Rubinstein, M., Colby, R.H.: Polymer Physics. OUP, Oxford (2003)

    Google Scholar 

  45. Savkoor, A.R.: On the friction of rubber. Wear. 8(3), 222–237 (1965). https://doi.org/10.1016/0043-1648(65)90161-4

    Article  Google Scholar 

  46. Luengo, G., Schmitt, F.-J., Hill, R., Israelachvili, J.: Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules. 30(8), 2482–2494 (1997). https://doi.org/10.1021/ma9519122

    Article  Google Scholar 

  47. Schulze, K.D., Hart, S.M., Marshall, S.L., O’Bryan, C.S., Urueña, J.M., Pitenis, A.A., Sawyer, W.G., Angelini, T.E.: Polymer osmotic pressure in hydrogel contact mechanics. Biotribology. 11, 3–7 (2017). https://doi.org/10.1016/j.biotri.2017.03.004

    Article  Google Scholar 

  48. Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980). https://doi.org/10.1115/1.3138202

    Article  Google Scholar 

  49. Strange, D.G.T., Fletcher, T.L., Tonsomboon, K., Brawn, H., Zhao, X., Oyen, M.L.: Separating poroviscoelastic deformation mechanisms in hydrogels. Appl. Phys. Lett. 102(3), 031913 (2013). https://doi.org/10.1063/1.4789368

    Article  Google Scholar 

  50. Espinosa-Marzal, R.M., Bielecki, R.M., Spencer, N.D.: Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: a bioinspired approach. Soft Matter 9(44), 10572–10585 (2013)

    Article  Google Scholar 

  51. Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313

  52. Suriano, R., Griffini, G., Chiari, M., Levi, M., Turri, S.: Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis. J. Mech. Behav. Biomed. Mater. 30, 339–346 (2014). https://doi.org/10.1016/j.jmbbm.2013.12.006

    Article  Google Scholar 

  53. Pitenis, A.A., Uruena, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter. 10(44), 8955–8962 (2014). https://doi.org/10.1039/c4sm01728e

    Article  Google Scholar 

  54. Reiner, M.: The deborah number. Phys. today 17(1), 62 (1964)

    Article  Google Scholar 

  55. Persson, B.N., Volokitin, A.I.: Rubber friction on smooth surfaces. Eur. Phys. J. E. 21(1), 69–80 (2006). https://doi.org/10.1140/epje/i2006-10045-9

    Article  Google Scholar 

  56. Hodges, R.R., Dartt, D.A.: Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp. Eye Res. 117, 62–78 (2013). https://doi.org/10.1016/j.exer.2013.07.027

    Article  Google Scholar 

  57. Bansil, R., Turner, B.S.: Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11(2–3), 164–170 (2006). https://doi.org/10.1016/j.cocis.2005.11.001

    Article  Google Scholar 

  58. Jay, G.D., Waller, K.A.: The biology of lubricin: near frictionless joint motion. Matrix Biol. 39, 17–24 (2014). https://doi.org/10.1016/j.matbio.2014.08.008

    Article  Google Scholar 

  59. Swann, D.A., Slayter, H.S., Silver, F.H.: The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J. Biol. Chem. 256(11), 5921–5925 (1981)

    Google Scholar 

  60. Chawla, K., Lee, S., Lee, B.P., Dalsin, J.L., Messersmith, P.B., Spencer, N.D.: A novel low-friction surface for biomedical applications: modification of poly(dimethylsiloxane) (PDMS) with polyethylene glycol(PEG)-DOPA-lysine. J. Biomed. Mater. Research A. 90(3), 742–749 (2009). https://doi.org/10.1002/jbm.a.32141

    Article  Google Scholar 

Download references

Acknowledgements

Support to TS by the Fulbright Program, U.S. Department, of State is acknowledged. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-17-61696.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Espinosa-Marzal.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 475 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoaib, T., Espinosa-Marzal, R.M. Insight into the Viscous and Adhesive Contributions to Hydrogel Friction. Tribol Lett 66, 96 (2018). https://doi.org/10.1007/s11249-018-1045-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-018-1045-7

Keywords

Navigation