Advertisement

Tribology Letters

, 66:96 | Cite as

Insight into the Viscous and Adhesive Contributions to Hydrogel Friction

  • Tooba Shoaib
  • Rosa M. Espinosa-MarzalEmail author
Original Paper

Abstract

Investigation of the mechanisms underlying hydrogel lubrication is pivotal in understanding the complexity of biolubrication. In this work, the frictional characteristics of poly(acrylamide) hydrogels with varying composition have been studied over a wide range of sliding velocities and normal loads by colloidal probe lateral force microscopy. The results show that the friction force between the hydrogel and the colloid increases with velocity at sliding velocities above a transition value (\({V^*}\)), while the friction force at slower sliding velocities depends on the composition, and it can either increase or decrease with velocity. Based on the viscoelastic behavior of hydrogels, we model hydrogel friction as the combination of viscous dissipation and the energy dissipated through the rupture of the transient adhesive bridges across the interface. The model parameters depend on relaxation characteristics of the confined polymer network at the interface and on the (bulk) viscoelastic behavior of the hydrogel and are sensitive to the compressive stress. We observe a collapse of the experimental data (at different loads and velocities and for hydrogels with different compositions) in a non-monotonic master curve with a minimum friction force at the transition velocity. Furthermore, a simple relation for the transition velocity \({V^*}\) is derived from theory, thereby demonstrating the competing effect of both the adhesive and the viscous contributions to friction, which helps to reconcile discrepancies between previous studies of hydrogel friction.

Keywords

Hydrogels Soft matter lubrication Lateral force microscopy Friction 

Notes

Acknowledgements

Support to TS by the Fulbright Program, U.S. Department, of State is acknowledged. This material is based upon work supported by the National Science Foundation under Grant No. CMMI-17-61696.

Supplementary material

11249_2018_1045_MOESM1_ESM.pdf (475 kb)
Supplementary material 1 (PDF 475 KB)

References

  1. 1.
    Dowson, D.: Bio-tribology. Faraday Discuss. 156, 9–30 (2012).  https://doi.org/10.1039/c2fd20103h.CrossRefGoogle Scholar
  2. 2.
    Sterner, O., Karageorgaki, C., Zurcher, M., Zurcher, S., Scales, C.W., Fadli, Z., Spencer, N.D., Tosatti, S.G.P.: Reducing friction in the eye: a comparative study of lubrication by surface-anchored synthetic and natural ocular mucin analogues. ACS Appl. Mater. Interfaces. 9(23), 20150–20160 (2017).  https://doi.org/10.1021/acsami.6b16425 CrossRefGoogle Scholar
  3. 3.
    Pult, H., Tosatti, S.G., Spencer, N.D., Asfour, J.M., Ebenhoch, M., Murphy, P.J.: Spontaneous blinking from a tribological viewpoint. Ocul. Surf. 13(3), 236–249 (2015).  https://doi.org/10.1016/j.jtos.2014.12.004 CrossRefGoogle Scholar
  4. 4.
    Samsom, M., Chan, A., Iwabuchi, Y., Subbaraman, L., Jones, L., Schmidt, T.A.: In vitro friction testing of contact lenses and human ocular tissues: effect of proteoglycan 4 (PRG4). Tribol. Int. 89, 27–33 (2015).  https://doi.org/10.1016/j.triboint.2014.11.022 CrossRefGoogle Scholar
  5. 5.
    Dunn, A.C., Urueña, J.M., Puig, E., Perez, V.L., Sawyer, W.G.: Friction coefficient measurement of an in vivo murine cornea. Tribol. Lett. 49(1), 145–149 (2012).  https://doi.org/10.1007/s11249-012-0033-6 CrossRefGoogle Scholar
  6. 6.
    Dunn, A.C., Cobb, J.A., Kantzios, A.N., Lee, S.J., Sarntinoranont, M., Tran-Son-Tay, R., Sawyer, W.G.: Friction coefficient measurement of hydrogel materials on living epithelial cells. Tribol. Lett. 30(1), 13–19 (2008).  https://doi.org/10.1007/s11249-008-9306-5 CrossRefGoogle Scholar
  7. 7.
    Faust, T.: Coordination driven gelation. Nat. Chem. 7(9), 681–681 (2015).  https://doi.org/10.1038/nchem.2339 CrossRefGoogle Scholar
  8. 8.
    Pan, Y., Xiong, D.: Friction properties of nano-hydroxyapatite reinforced poly(vinyl alcohol) gel composites as an articular cartilage. Wear. 266(7–8), 699–703 (2009).  https://doi.org/10.1016/j.wear.2008.08.012 CrossRefGoogle Scholar
  9. 9.
    Gong, J., Iwasaki, Y., Osada, Y., Kurihara, K., Hamai, Y.: Friction of gels. 3. Friction on solid surfaces. J. Phys. Chem. B. 103(29), 6001–6006 (1999).  https://doi.org/10.1021/jp9902553 CrossRefGoogle Scholar
  10. 10.
    Chang, D.P., Dolbow, J.E., Zauscher, S.: Switchable friction of stimulus-responsive hydrogels. Langmuir. 23(1), 250–257 (2007).  https://doi.org/10.1021/la0617006 CrossRefGoogle Scholar
  11. 11.
    Pan, Y.-S., Xiong, D.-S., Ma, R.-Y.: A study on the friction properties of poly(vinyl alcohol) hydrogel as articular cartilage against titanium alloy. Wear. 262(7–8), 1021–1025 (2007).  https://doi.org/10.1016/j.wear.2006.10.005 CrossRefGoogle Scholar
  12. 12.
    Kim, S.H., Opdahl, A., Marmo, C., Somorjai, G.A.: AFM and SFG studies of pHEMA-based hydrogel contact lens surfaces in saline solution: adhesion, friction, and the presence of non-crosslinked polymer chains at the surface. Biomaterials. 23(7), 1657–1666 (2002).  https://doi.org/10.1016/s0142-9612(01)00292-7 CrossRefGoogle Scholar
  13. 13.
    Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter. 13(2), 428–435 (2017).  https://doi.org/10.1039/c6sm02111e CrossRefGoogle Scholar
  14. 14.
    Gong, J., Osada, Y.: Gel friction: A model based on surface repulsion and adsorption. J. Chem. Phys. 109(18), 8062–8068 (1998).  https://doi.org/10.1063/1.477453 CrossRefGoogle Scholar
  15. 15.
    Kurokawa, T., Tominaga, T., Katsuyama, Y., Kuwabara, R., Furukawa, H., Osada, Y., Gong, J.P.: Elastic-hydrodynamic transition of gel friction. Langmuir. 21(19), 8643–8648 (2005).  https://doi.org/10.1021/la050635h CrossRefGoogle Scholar
  16. 16.
    Kagata, G., Gong, J.P., Osada, Y.: Friction of gels. 6. Effects of sliding velocity and viscoelastic responses of the network. J. Phys. Chem. B. 106(18), 4596–4601 (2002).  https://doi.org/10.1021/jp012380w CrossRefGoogle Scholar
  17. 17.
    Ohsedo, Y., Takashina, R., Gong, J.P., Osada, Y.: Surface friction of hydrogels with well-defined polyelectrolyte brushes. Langmuir 20(16), 6549–6555 (2004).  https://doi.org/10.1021/la036211&%23x002B; CrossRefGoogle Scholar
  18. 18.
    Schallamach, A.: A theory of dynamic rubber friction. Wear. 6(5), 375–382 (1963).  https://doi.org/10.1016/0043-1648(63)90206-0 CrossRefGoogle Scholar
  19. 19.
    Gong, J.P.: Friction and lubrication of hydrogels—its richness and complexity. Soft Matter. 2(7), 544–552 (2006).  https://doi.org/10.1039/b603209p CrossRefGoogle Scholar
  20. 20.
    Li, A., Ramakrishna, S.N., Kooij, E.S., Espinosa-Marzal, R.M., Spencer, N.D.: Poly(acrylamide) films at the solvent-induced glass transition: adhesion, tribology, and the influence of crosslinking. Soft Matter. 8(35), 9092–9100 (2012).  https://doi.org/10.1039/c2sm26222c CrossRefGoogle Scholar
  21. 21.
    Kim, S.H., Marmo, C., Somorjai, G.A.: Friction studies of hydrogel contact lenses using AFM: non-crosslinked polymers of low friction at the surface. Biomaterials. 22(24), 3285–3294 (2001).  https://doi.org/10.1016/s0142-9612(01)00175-2 CrossRefGoogle Scholar
  22. 22.
    Li, A., Benetti, E.M., Tranchida, D., Clasohm, J.N., Schönherr, H., Spencer, N.D.: Surface-grafted, covalently cross-linked hydrogel brushes with tunable interfacial and bulk properties. Macromolecules. 44(13), 5344–5351 (2011).  https://doi.org/10.1021/ma2006443 CrossRefGoogle Scholar
  23. 23.
    Gong, J.P., Kurokawa, T., Narita, T., Kagata, G., Osada, Y., Nishimura, G., Kinjo, M.: Synthesis of hydrogels with extremely low surface friction. J. Am. Chem. Soc.. 123(23), 5582–5583 (2001).  https://doi.org/10.1021/ja003794q CrossRefGoogle Scholar
  24. 24.
    Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses and the friction of gelatin gels. Eur. Phys. J. E. 11(1), 85–93 (2003).  https://doi.org/10.1140/epje/i2003-10009-7 CrossRefGoogle Scholar
  25. 25.
    Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, W.G.: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 1–2, 24–29 (2015).  https://doi.org/10.1016/j.biotri.2015.03.001 CrossRefGoogle Scholar
  26. 26.
    Pitenis, A.A., Manuel Urueña, J., Nixon, R.M., Bhattacharjee, T., Krick, B.A., Dunn, A.C., Angelini, T.E., Sawyer, G.: W.: Lubricity from entangled polymer networks on hydrogels. J. Tribol. 138(4), 042102 (2016).  https://doi.org/10.1115/1.4032889 CrossRefGoogle Scholar
  27. 27.
    Sokoloff, J.B.: Theory of hydrostatic lubrication for two like-charge polymer hydrogel coated surfaces. Soft Matter 6(16) (2010).  https://doi.org/10.1039/c000252f
  28. 28.
    Gong, J.P., Kagata, G., Osada, Y.: Friction of gels. 4. Friction on charged gels. J. Phys. Chem. B 103(29), 6007–6014 (1999)CrossRefGoogle Scholar
  29. 29.
    Shoaib, T., Heintz, J., Lopez-Berganza, J.A., Muro-Barrios, R., Egner, S.A., Espinosa-Marzal, R.M.: Stick-slip friction reveals hydrogel lubrication mechanisms. Langmuir. 34(3), 756–765 (2018).  https://doi.org/10.1021/acs.langmuir.7b02834 CrossRefGoogle Scholar
  30. 30.
    Grosch, K.A.: The relation between the friction and visco-elastic properties of rubber. Proc. Royal Soc. A. 274(1356), 21–39 (1963).  https://doi.org/10.1098/rspa.1963.0112 CrossRefGoogle Scholar
  31. 31.
    Rennie, A.C., Dickrell, P.L., Sawyer, W.G.: Friction coefficient of soft contact lenses: measurements and modeling. Tribol. Lett. 18(4), 499–504 (2005)CrossRefGoogle Scholar
  32. 32.
    Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88(7), 075509 (2002).  https://doi.org/10.1103/PhysRevLett.88.075509 CrossRefGoogle Scholar
  33. 33.
    Tse, J.R., Engler, A.J.: Preparation of hydrogel substrates with tunable mechanical properties. Current Protocols in Cell Biology Chap. 10, Unit. 10 16 (2010). https://doi.org/10.1002/0471143030.cb1016s47Google Scholar
  34. 34.
    Cannara, R.J., Eglin, M., Carpick, R.W.: Lateral force calibration in atomic force microscopy: a new lateral force calibration method and general guidelines for optimization. Rev. Sci. Instrum. 77(5), 053701 (2006)CrossRefGoogle Scholar
  35. 35.
    Pabst, W., Gregorová, E.V.A.: Elastic properties of silica polymorphs—a review. Ceram. Silik. 57(3), 167–184 (2013)Google Scholar
  36. 36.
    Hertz, H.: Über die Berührung fester elastischer Körper. Reine Angewandte Mathematik 92, 156–171 (1881)Google Scholar
  37. 37.
    Ramakrishna, S.N., Cirelli, M., Divandari, M., Benetti, E.M.: Effects of lateral deformation by thermoresponsive polymer brushes on the measured friction forces. Langmuir. 33(17), 4164–4171 (2017).  https://doi.org/10.1021/acs.langmuir.7b00217 CrossRefGoogle Scholar
  38. 38.
    Gautreau, Z., Griffin, J., Peterson, T., Thongpradit, P.: Characterizing viscoelastic properties of polyacrylamide gels. Worcester Polytechnic Institute, Worcester (2006)Google Scholar
  39. 39.
    Resnikoff, J.I.N.: The role of extracellular matrix composition and mechanical properties in driving cardiac differentiation of mesenchymal stem cells. (2012)Google Scholar
  40. 40.
    Schallamach, A.: How does rubber slide? Wear 17(4), 301–312 (1971)CrossRefGoogle Scholar
  41. 41.
    Drummond, C., Israelachvili, J., Richetti, P.: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E. 67(6 Pt 2), 066110 (2003).  https://doi.org/10.1103/PhysRevE.67.066110 CrossRefGoogle Scholar
  42. 42.
    Dhinojwala, A., Cai, L., Granick, S.: Critique of the friction coefficient concept for wet (lubricated) sliding. Langmuir 12(19), 4537–4542 (1996)CrossRefGoogle Scholar
  43. 43.
    Demirci, U., Khademhosseini, A.: Gels handbook: Fundamentals, properties and applications (in 3 volumes). World scientific, (2016)Google Scholar
  44. 44.
    Rubinstein, M., Colby, R.H.: Polymer Physics. OUP, Oxford (2003)Google Scholar
  45. 45.
    Savkoor, A.R.: On the friction of rubber. Wear. 8(3), 222–237 (1965).  https://doi.org/10.1016/0043-1648(65)90161-4 CrossRefGoogle Scholar
  46. 46.
    Luengo, G., Schmitt, F.-J., Hill, R., Israelachvili, J.: Thin film rheology and tribology of confined polymer melts: contrasts with bulk properties. Macromolecules. 30(8), 2482–2494 (1997).  https://doi.org/10.1021/ma9519122 CrossRefGoogle Scholar
  47. 47.
    Schulze, K.D., Hart, S.M., Marshall, S.L., O’Bryan, C.S., Urueña, J.M., Pitenis, A.A., Sawyer, W.G., Angelini, T.E.: Polymer osmotic pressure in hydrogel contact mechanics. Biotribology. 11, 3–7 (2017).  https://doi.org/10.1016/j.biotri.2017.03.004 CrossRefGoogle Scholar
  48. 48.
    Mow, V.C., Kuei, S.C., Lai, W.M., Armstrong, C.G.: Biphasic creep and stress relaxation of articular cartilage in compression? Theory and experiments. J. Biomech. Eng. 102(1), 73–84 (1980).  https://doi.org/10.1115/1.3138202 CrossRefGoogle Scholar
  49. 49.
    Strange, D.G.T., Fletcher, T.L., Tonsomboon, K., Brawn, H., Zhao, X., Oyen, M.L.: Separating poroviscoelastic deformation mechanisms in hydrogels. Appl. Phys. Lett. 102(3), 031913 (2013).  https://doi.org/10.1063/1.4789368 CrossRefGoogle Scholar
  50. 50.
    Espinosa-Marzal, R.M., Bielecki, R.M., Spencer, N.D.: Understanding the role of viscous solvent confinement in the tribological behavior of polymer brushes: a bioinspired approach. Soft Matter 9(44), 10572–10585 (2013)CrossRefGoogle Scholar
  51. 51.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313Google Scholar
  52. 52.
    Suriano, R., Griffini, G., Chiari, M., Levi, M., Turri, S.: Rheological and mechanical behavior of polyacrylamide hydrogels chemically crosslinked with allyl agarose for two-dimensional gel electrophoresis. J. Mech. Behav. Biomed. Mater. 30, 339–346 (2014).  https://doi.org/10.1016/j.jmbbm.2013.12.006 CrossRefGoogle Scholar
  53. 53.
    Pitenis, A.A., Uruena, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter. 10(44), 8955–8962 (2014).  https://doi.org/10.1039/c4sm01728e CrossRefGoogle Scholar
  54. 54.
    Reiner, M.: The deborah number. Phys. today 17(1), 62 (1964)CrossRefGoogle Scholar
  55. 55.
    Persson, B.N., Volokitin, A.I.: Rubber friction on smooth surfaces. Eur. Phys. J. E. 21(1), 69–80 (2006).  https://doi.org/10.1140/epje/i2006-10045-9 CrossRefGoogle Scholar
  56. 56.
    Hodges, R.R., Dartt, D.A.: Tear film mucins: front line defenders of the ocular surface; comparison with airway and gastrointestinal tract mucins. Exp. Eye Res. 117, 62–78 (2013).  https://doi.org/10.1016/j.exer.2013.07.027 CrossRefGoogle Scholar
  57. 57.
    Bansil, R., Turner, B.S.: Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11(2–3), 164–170 (2006).  https://doi.org/10.1016/j.cocis.2005.11.001 CrossRefGoogle Scholar
  58. 58.
    Jay, G.D., Waller, K.A.: The biology of lubricin: near frictionless joint motion. Matrix Biol. 39, 17–24 (2014).  https://doi.org/10.1016/j.matbio.2014.08.008 CrossRefGoogle Scholar
  59. 59.
    Swann, D.A., Slayter, H.S., Silver, F.H.: The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J. Biol. Chem. 256(11), 5921–5925 (1981)Google Scholar
  60. 60.
    Chawla, K., Lee, S., Lee, B.P., Dalsin, J.L., Messersmith, P.B., Spencer, N.D.: A novel low-friction surface for biomedical applications: modification of poly(dimethylsiloxane) (PDMS) with polyethylene glycol(PEG)-DOPA-lysine. J. Biomed. Mater. Research A. 90(3), 742–749 (2009).  https://doi.org/10.1002/jbm.a.32141 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of Illinois at Urbana−ChampaignUrbanaUSA
  2. 2.Department of Materials Science and EngineeringUniversity of Illinois at Urbana−ChampaignUrbanaUSA

Personalised recommendations